Subglacial flood event observed using *in situ* GPS data, CryoSat-2 altimetry, and MODIS image differencing on the Whillans Ice Plain

Matthew R. Siegfried Helen Fricker, Mackenzie Roberts Scripps Institution of Oceanography Ted Scambos NSIDC/CIRES

West Antarctic Ice Sheet Workshop Sterling, VA mrsiegfried@ucsd.edu

Whillans Ice Plain Overview

Whillans Ice Plain instrumentation

ICESat Time Series: 2003–2009

(Fricker and Scambos, 2009)

Precise, but spatially and temporally discontinuous

Subglacial Lake Mercer: ICESat and GPS

Disconnect between ICESat time-series and GPS observations. *Advection upslope? Change in hydropotential regime?* Ready to burst?!

Basics Coverage

CryoSat-2: 2010–present

Radar altimeter, 92° inclination, 369-day orbit, 30-day sub cycle

Modes:

- LRM: conventional pulse-limited radar (\sim kms x kms)
- SAR: traditional synthetic aperture radar (\sim 300m x kms)
- SARin: short-baseline interferometer (\sim 300m × 300m)

Basics Coverage

Comparing satellites...

Basics Coverage

Comparing satellites...

Spatial and temporal monitoring of dh/dt

mrsiegfried@ucsd.edu

Whillans Ice Plain subglacial flood events

Spatial Validation: MODIS image differencing

Temporal Validation: GPS surface elevation

Subglacial Lake Mercer: 10+ years of history

WIP GPS tie together cryo-focused satellite-borne datasets

Where does the water go??

Where does the water go??

Where does the water go??

Ice Stream Velocity

Ice Stream Velocity

Whillans Ice Stream

Mercer Ice Stream

Ice Stream Velocity

Whillans Ice Stream

Mercer Ice Stream

mrsiegfried@ucsd.edu Whillans Ice Plain subglacial flood events

Whillans Conway

Subglacial Lake Whillans

More overlap between GPS and satellite missions than at SLM

Subglacial Lake Whillans

Whillans Conway

More lake action...

Conclusions

- Independent, coincident measurements of a subglacial lake discharge event with high spatial and temporal resolution
- SLM discharge corresponds to a measurable increase in ice velocity
- CryoSat-2 is quite adept at measuring dynamic dh/dt
- We need high quality datasets between major satellite missions

Thank You!

- NSF-OPP, NASA, SIO, UCSD
- KBA, NYANG, UNAVCO
- WISSARD 2011/2012, 2012/2013 field teams
- POLENET

CryoSat-2 Validation: salar de Uyuni

