

Seabed topography beneath the Larsen C Ice Shelf from seismic soundings

AM Brisbourne, AM Smith, EC King, KW Nicholls, PR Holland and K Makinson WAIS 2013

- Motivation
- Fieldwork & Data
- Results & Implications
- Conclusions

Currently in review: The Cryosphere Discuss., 7, 4177-4206, doi:10.5194/tcd-7-4177-2013.

Motivation

Sub-shelf bathymetry model required for oceanographic circulation modelling to address ice-ocean thermal transfer

• Validation with seismic spot-measurements of bathymetry

C&B 2012: - Inversion of IceBridge 2009 free-air gravity data

- •1D geology across entire region, single density contrast assumed
- Mean depth to seabed is controlled by previous insitu measurements
- Localized over-deepenings
- Two broad troughs

Bathymetry beneath the Larsen Ice Shelf determined from inversion of airborne gravity data (Cochran and Bell, 2012)

-69°

British Antarctic Survey

Seismic survey 2012-13 Planned Undertaken

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Data quality and ice base / seabed reflection strength highly variable

Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Results

POLAR SCIENCE FOR PLANET EARTH

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

NATURAL ENVIRONMENT RESEARCH COUNCIL

Summary

Uncertainties in seismic results: Ice and cavity thickness: ±5m to ±10m Seabed depth: ±10m to ±20m

Cochran and Bell (2012) Error in bathymetry: 162m rms Error in cavity thickness: 143m rms

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Implications

Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica (Mueller et al., 2012)

Implications

Narrowing of cavity in north increases basal melt rate to ~2 m/a

Implications

Minimum-350m cavity removes high basal melt rate from northern sector

Modelling FAA (Talwani et al., 1959)

Conclusions

- Bathymetry across Larsen C Ice Shelf successfully acquired using active seismics
 - Uncertainties of <20m in cavity thickness
 - Good agreement between seismically-measured ice thickness and previous studies
 - Seismic velocity variation consistent with varying degrees of firn compaction and melt
- Major discrepancies between bathymetry derived from free air gravity anomaly inversion compared to seismically-measured
 - Most notably: Shelf edge; Marmelon Point; Francis Island; Tonkin Island
 - 162m rms error in bathymetry (143m cavity thickness) derived from airborne gravity inversion
- Significant implications for sub-shelf circulation models
 - At eastern edge of LIS, no features to inhibit or concentrate water circulation
 - Significance of cavity model errors of this magnitude demonstrated by Mueller et al (2012)
 - Significant barriers to ocean circulation around peninsulas near the grounding line, consistent with partitioned north-south circulation from the ice front (Nicholls et al, 2012)

References:

Brisbourne, A. M., Smith, A. M., King, E. C., Nicholls, K. W., Holland, P. R., and K. Makinson (2013), Seabed topography beneath Larsen C Ice Shelf from seismic soundings, *The Cryosphere Discuss.*, **7**, 4177-4206 (doi:10.5194/tcd-7-4177-2013)
Cochran, J. R. and R. E. Bell (2012), Inversion of IceBridge gravity data for continental shelf bathymetry beneath the Larsen Ice Shelf, Antarctica, *J. Glaciol.*, **58** (209), 540-552, (doi:10.3189/2012JoG11J033)
Mueller, R. D., L. Padman, M. S. Dinniman, S. Y. Erofeeva, H. A. Fricker, and M. A. King (2012), Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica, *J. Geophys. Res.*, **117**, C05005, (doi:10.1029/2011JC007263)

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

British Antarctic Survey

British Antarctic Survey

Motivation – Sub Ice Shelf Bathymetry

- Ice shelves act as a buttress to the flow of inland ice; Acceleration of ice drainage following loss of Larsen B
- Derivation of sub-shelf bathymetry model for oceanographic circulation modelling to address ice-ocean thermal transfer
- Inversion of IceBridge gravity data for continental shelf bathymetry beneath the Larsen Ice Shelf, Antarctica (Cochran and Bell, 2012)
- Use seismic spot-measurements to verify inversion model

Ice Draft and Seismic Thickness

Fit: h = 0.113 H + 5.003 (±0.005 / ±1.525; R²=0.89)

British Antarctic Survey Gravity Inversion Bathymetry C&B (2012) vs kriged IceBridge data; Ice draft from Holland (2009)

Marine Ice (Holland, 2009) overlaying MODIS image (Haran, 2003)

- Strong correlation between marine ice distribution (yellow bands) and uncertainty / difficulty in identifying seismic base of ice (red sites) at a qualitative level
- DInSAR grounding line (Rignot, 2011)
- Would require normalisation of site by site amplitudes to be validated

