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Motivation: Polar Cryosphere

= Polarice: 75 % of

world‘s freshwater
(IPCC, 2007)

= Melting of West
Antarctic Ice
Sheet: +5 m sea

level (Mercer, 1978; Bamber,
2009) g

= Melting of polar
Ice: decreased
surface albedo,
positive feedback

East Antarctica

West Antarctica



Motivation: Antarctic
Subglacial Lakes

145+ Antarctic
subglacial lakes

100s to 1000s of
meters beneath ice

Influencing ice sheet
Biotic ecosystems

Analog
environments for
extraterrestrial
bodies

Smith et al., 2009



West Antarctica

East Antarctica

Whillans
: |ce Stream




Motivation: WISSARD Expedition

Whillans Ice Stream

Subglacial Access Research

Drilling

= (GeomicroBiology of
Antarctic Subglacial
Environments (GBASE)

= Robotics Access to
Grounding-zones for
Exploration and Science
(RAGES)

= Lake and Ice Stream
Subglacial Access
Research Drilling
(LISSARD):
- 8” borehole for
MSLED



Mission Objectives

Investigate water-ice interface
Determine vertical and horizontal
structure of water column

e Physical: pressure and temperature
e Chemical: salinity and pH

¢ Visual inspection

Visually investigate lake floor for
geologic and sedimentary processes

Look for biological features



Hydroid Remus 100

0.19 m diameter, max 100 m depth

Theseus

Bluefin 9 1.27 m x 10.7.8

0.24 m diameter
max 200 m depth










System Requirements

= Sensors: high resolution
video, temperature,
salinity and pressure

= Operational range of 1
Km

= Operating at depth up
to 1.5 km

= Maximum 8 cm

diameter and 70 cm
length

* Remotely operated
from surface

= Localization of
measurements

Operate for minimum 2 h

Two-way communication
with surface in real-time

Return to the borehole for
retrieval

Operate in temperatures
from -10°C to 50°C

Utilization of commercial-
off-the-shelf components

Withstand decontamination
for clean access

Utilization of existing
Infrastructure (Ice Borehole
Probe)

12









Alberto Behar, PhD







" Fiber Optic Communication
to Surface

Concept

Background image: Flickr, WoaH




System: Main Challenges

= Form factor constraints (borehole, mission)
= High pressures (environment)
= Low temperature (environment)

= High bandwidth communication with
surface (payload)

» |nterface constraints (Ice Borehole Probe)







Structure

Electronics Compartment

Nose Cone
with Window

Background image: Flickr, WoaH

Main Motor Cavity

Liquid Compensated
Servo Motors

Propeller with
Kort Nozzle




D light Ring 7

Background image: Flickr, WoaH
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Implementation: Pressure Hull

7075 Aluminum

Hard anodized for chemical resistance
3mm wall, internal support rings
Optimized for strength/weight
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6. Gigabit
Ethernet

5. Fiber
Trans-
ceiver

O\

lﬁ

\ 3. Fiber

Transceiver

1. Camera

2. Gigabit
Ethernet




Actuator section







Pool Tes













Ways Forward

lterative testing
Battery life
Temperature
Optimization
Computational Fluid Dynamics
Finite Element Analysis

Extensive in-water testing at analogue
sites

Field season in West Antarctica
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Field Seasons

2011 — Field Test Deployment
McMurdo Station (November-December)

2012 — RAGES/Pine Island Glacier

2013/2014 —Field Deployment

WISSARD/LISSARD — Whillans Ice Stream
Antarctica
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