Sea ice and West Antarctic ice-shelf stability

Kelly Brunt (NASA/GSFC/Cryosphere Branch)
Emile Okal (Northwestern University)
Doug MacAyeal (University of Chicago)

Catastrophic Ice-Shelf Breakup

MODIS, 31 Jan 2002

MODIS, 13 Apr 2002

MODIS, 28 Feb 2008

MODIS, 17 Mar 2008

Is a lack of sea ice a necessary precursor to ice shelf calving/collapse?

Two 2011 calving events Sea ice conditions are a factor in both events

Sulzberger ~11 Mar 2011

McMurdo ~25 Feb 2011

MODIS Mosaic of Antarctica 2003-2004

Tōhoku Earthquake (M = 9.0) and Tsunami, 11 Mar 2011

Sulzberger Ice Shelf

MODIS Mosaic of Antarctica 2003-2004

Sulzberger Ice Shelf

20 km

ESA Envisat Advanced Synthetic Aperture Radar (ASAR)

Coincidence?

USGS trimetrogon aerial photograph

11 Mar 2011

Envisat ASAR

stable for +46 years

05 Feb 1965

Sea ice at Sulzberger

- Dampens swell
- Buttresses ice shelf

11 Mar 2011

01 Mar 2011

Sea ice at Sulzberger

- Dampens swell*
- Buttresses ice shelf

01 Mar 2011

27 Feb 2010

21 Dec 2004

McMurdo Ice Shelf

- Dampens swell
- Buttresses ice shelf*

40,000 km² fast ice lost in ~40 days

McMurdo Ice Shelf

The state of the s

- Dampens swell
- Buttresses ice shelf*

stable for +48 years

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, C12027, doi:10.1029/2009JC006083, 2010

Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: Another factor in ice sheet stability?

Robert A. Massom, 1,2 A. Barry Giles, Helen A. Fricker, Roland C. Warner, 1,2 Benoit Legrésy, 4 Glenn Hyland, 1,2 Neal Young, 1,2 and Alexander D. Fraser^{2,5}

Radarsat SAR

- Dampens swell*
- Buttresses ice shelf*

MODIS, 26 Feb 2010

Relationships between iceberg calving and sea ice conditions on NE Devon Ice Cap, Nunavut

Emilie Herdes and Luke Copland (<u>luke.copland@uottawa.ca</u>)

Department of Geography, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.

Brad Danielson and Martin Sharp

Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G

2E3, Canada

Conclusions:

Sulzberger Ice Shelf calving event

- Distant teleconnection (13,000 km)
- Links unrelated phenomena
- Tsunami-induced swell occurs when Sulzberger Bay is devoid of sea ice

McMurdo Ice Shelf calving event

- Loss of 40,000 km² of 'persistent' sea ice
- Mild storm event triggers calving

Sea ice plays a critical role in ice-shelf stability

Controls on calving/collapse include

- Thermodynamic (e.g., Larsen B)
- Mechanical (e.g., Sulzberger, McMurdo, Wilkins)
- Sea ice

Big Thanks: Alvaro Ivanoff (NASA/GSFC), Jeremy Bassis, Paul Morin