Numerical model investigation of Crane Glacier response to collapse of Larsen B ice shelf, Antarctic Peninsula

Adam Campbell University of Washington

Christina Hulbe Portland State University

Olga Sergienko Princeton/GFDL

aaaaaaaaa!

Larsen B ice shelf collapse

rapid event tied to regional warming

1957 to 2006 mean annual temperature trend Steig et al., 2009, *Nature*, AWS + thermal infrared

AP: 0.11 +/- 0.06 °C per decade

MODIS true color from NSIDC

different patterns emerge over time front location following ice shelf disintegration

different patterns emerge over time

tidewater calving retreat

ice dynamics

Crane Glacier

rapid change, large glacier and we have some data

tidewater calving instability

height above buoyancy (van der Veen; Vieli)

$$h_c = \frac{\rho_{water}}{\rho_{ice}} (1+q) d$$

 $h_C / h > 1$ retreat

- h ice thickness
- h_c critical thickness
- *d* water depth
- q empricial const.

Mapple & Melville photo: T. Scambos

2002: speed up 2004: slow down 2006: speed up

instantaneous response

🛆 to 🔺

numerical model

finite element solver for momentum equation along flightline

two downstream boundary conditions

- 1) pre-collapse: ice + backpressure
- 2) post-collapse: water + air

three experiments

- 1) deformation only
- 2) deformation + sliding
- 3) deformation + sliding with steady-state front position

Figure 3.1 Mesh for the non-scaled models consists of 11501 nodes with an increase density near large gradients in the glacial geometry.

Table 3.1 Mesh statistics for non-scaled mesh.

Quantity	Value
Number of Elements	11501
Minimum element quality	0.0446
Element area ratio	8.85×10^{-5}

numerical model

finite element solver for momentum equation along flightline *(no lateral drag)*

estimate of missing bed from surface & observed velocity estimated ice temperature pressure condition at downstream end *ice* + *backpressure*

instantaneous response to ice shelf loss

FEM solves momentum equation along flightline *(no lateral drag)*

pressure condition at downstream end

ice + backpressure or air & water

instantaneous response to ice shelf loss ice deformation only along flightline

numerical model

deformation + sliding relation

tuned to observed "pre-collapse" speed

 $u_b = k \mathbf{T}_b^q p_e^{-l}$

speed at the bed depends on

basal shear stress τ_b effective pressure p_e (overburden - water)tunable parametersk, q, water level in p_e

instantaneous response to ice shelf loss

deformation + sliding along flightline
replace ice+backpressure with water+air

model velocity with steady front location deformation + sliding along flightline

conclusion

tidewater calving

front retreat matches prediction

instantaneous response

dominated by sliding amplification of stress perturbation

$$u_b = k \mathbf{T}_b^{\ q} p_e^{-l}$$

steady state front position

model velocity matches observations

ICESat laser altimeter track 0018

patterns emerge over time

Why does ice flow?

gravitational driving stress: extra pressure at ① compared to ② yields a stress gradient, ice deforms (flows) in response

resistive stresses:

forces applied at boundaries yield stresses that must balance (or "dissipate") the driving stress

from Press & Siever

glacier flow

x :

conservation of momentum

 $\partial \tau_{xx}$

 ∂x

 $\partial \tau_{xy}$

 ∂y

 $\partial \underline{\tau}_{xz}$

 ∂Z

= 0

,

$$\frac{\partial \tau_{ij}}{\partial x_i} + \rho g_j = 0 \qquad i,j \ \{x,y,z\}$$

$$z: \quad \frac{\partial \tau_{zz}}{\partial z} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial x} = \rho g$$

stresses

longitudinal

horizontal velocity

glacier flow

constitutive relationship between stress τ_{ij} and strain rate $\dot{\epsilon}_{ij}$

$$\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)^{u_i}$$
 ice velocity

for isotropic ice:

- $\dot{\mathbf{\epsilon}}_{ij} = A \, \mathbf{\tau}_e^{n-l} \, \mathbf{\tau}_{ij}$
- τ_e frame-invariant effective stress
- n empirical
- A empirical "rate factor" (has an Arrhenius form) temperature-dependent

