Ocean properties beneath Pine Island Glacier revealed by Autosub3 and implications for circulation and melting

Pierre Dutrieux¹, Adrian Jenkins¹, Stan Jacobs², Steve Mcphail³, James Perrett³, Andy Webb³, Dave White³

¹British Antarctic Survey, NERC, Cambridge

²Lamont-Doherty Earth Observatory, Columbia University, USA

³National Oceanography Centre, Southampton

Implications:

Ice cavity topography:

- → numerous 50-200+m deep / large crevasses, especially close to the grounding line;
- → and dent-like features with sharp 20m drops;

Ocean:

- → the ridge has a profound impact on circulation and melting, as warm water must pass over it;
- meltwater is associated with relatively turbid water, suggesting a sediment source from the grounding line;
- → the ridge also represents a source for tidal flow and local mixing enhancement;
- → positive feedback as thinning ice gives warm water access to greater ice surface and increase the melting potential.

Special thanks to the science team of NBP0901,

