A seismic investigation of the subglacial environment along Thwaites Glacier, West Antarctica

Leo E. Peters^{1,5}, Sridhar Anandakrishnan^{1,5}, Richard B. Alley^{1,5}, Huw J. Horgan², Joseph A. MacGregor³, Anthony M. Hoch^{4,5}, Donald E. Voigt^{1,5}

QuickTime[™] and a decompressor are needed to see this picture.

¹Penn State University ²Antarctic Research Center, VUW ³UTIG, University of Texas ⁴University of Kansas ⁵CReSIS

Observations of the Subglacial Environment

Outline

- Overview of the Amundsen Sea Embayment (ASE)
 - Where & Why
- Active seismic data
 - What we collected
- Amplitude analysis of the ice bottom reflection
 - How we interpret the data
- Results & Interpretations
 - Preliminary analysis
- Future Directions
 - Where we are headed

Changes in the ASE

Rignot et al. (2008)

Pritchard et al. (2009)

Bed Elevations in the ASE

Basal Shear Stress along Thwaites Glacier (TG)

Joughin et al. (2009)

Seismic Data Collection

- 60km collected in 2008/09
 - Along Flow L (40km)
 - Across Flow V (10km), R (10km)
- 4 to 8 fold data collected
- Incidence angles from 0 >45°

L Line - Seismic Data

V Line - Seismic Data

R Line - Seismic Data

Amplitude Analysis of the Ice Bottom Reflection - I $A_{observed}(\theta_i) = A_0 R(\theta_i) \gamma(\theta_i) e^{-a r(\theta_i)}$

Amplitude Analysis of the Ice Bottom Reflection

Phase and magnitude of the ice bottom reflection over a range of c yields basal lithology and water content

Dilatant Till at the Bed

•Reflection w/ negative phase at near offsets & positive phase at far offsets

•Largely observed in topographic lows and upglacier sides of basal highs

Stiff Till at the Bed

•Reflection w/ negative phase at near offsets that becomes increasingly negative at far offsets

•Largely observed in flat basal region of L profile

A Hard Sediment Bed

•Reflection w/ positive phase at near offsets that remains positive at far offsets

•Largely observed on the basal highs

L Line - Basal Interpretations

V Line - Basal Interpretations

R Line - Basal Interpretations

Future Work

- Finalize seismic processing of the three profiles to delineate the thickness of the basal environment and any shallow structures that may dictate basal morphology
- Correlate these observations with coincident ground-based and airborne radar data to fully characterize the subglacial environment of Thwaites Glacier - more on this at AGU

Summary

- Variable basal conditions along Thwaites Glacier on the kilometer-scale
 - Dilatant till to lithified sediments/bedrock
 - Basal lithology does not always correspond to basal shear stress calculations
 - Wet basal conditions present throughout
- Work to be done ...
 - Thorough analysis of the subglacial environment, its thickness, and spatial (dis)continuity
 - Correlation to radar reflectivity for glacier-scale analysis of the subglacial environment of Thwaites Glacier