The Bruce Plateau Ice Cap: Ice Dynamics across the Antarctic Peninsula

LARISSA Site Beta

Barilari Bay

Scar Inlet Ice Shelf

Erin Pettit (UAF) Ted Scambos (NSIDC) Martin Truffer (UAF) Robert Bauer (NSIDC) Ellen Mosley-Thompson (OSU) Victor Zagorodnov (OSU) Terry Haran (NSIDC)

Ronald Ross (Avega Systems/NSIDC) Bryan Blaire (NASA) Ian Joughin (UW) and LARISSA TEAM

Characteristics of the Bruce Platuau and the Larissa Site Beta Ice Core Site

LARISSA Site Beta Is the divide migrating? How does that affect the ice core analysis?

Scar Inlet Ice Shelf

East versus West : how are they thermally and dynamically different?

Tuesday, September 20, 2011

Barilari

Bay

Rough Drawing from Radar Images (not perfectly to scale!)

Divide and Ice Core Site Characteristics based on preliminary data:

Surface Elevation: divide: 2012m; ice core site: 1976m Thickness: divide: 460m; ice core site: 447m

Distance east of the divide: ~2km Surface slope: ~0.025 at the core site Surface velocity: 10(+/- 4) m/yr 15m Temperature (average annual): -14.8C Accumulation Rate (1963-2010): ~2m/yr Pore close-off depth: 80m Bed Temperature: -10.2C Geothermal Flux: 88mW/m

Preliminary Dansgaard Johnsen Model

Estimated Depth–Age Scale for Bruce Plateau

Slightly Divergent Flow due to Kansas Hill suggests additional thinning of layers

Ice flow out of the screen

30km

-15km

0km

Isochrones

Isochrones for Steady State Ice Divide

Older Ice Deeper Older Ice Near Surface

2. Change Accumulation

Experiment A: accumulation rate doubled *divide moved ~1500 m west to new s.s. *divide increased elevation by ~120m *timescale for response ~ 25years

Experiment B: accumulation slope doubled *divide moved ~800 m west to new s.s. *divide elevation did not change *timescale for response ~25 years

What does this mean?

These response timescales are ~1/10th of the fundamental H/b timescale (which is ~250 years at this site).
Hindmarsh (1996) predicated a timescale 1/16 H/b for accumulation-driven divide migration.

> Both accumulation changes result in a WESTWARD migration - away from our ice core site

* * Unlikely that our core site was on west side in past - good for interpretation

* * recent migration of the divide results in more catchment area for Larsen B - does this affect the overall Peninsula dynamics? Characteristics of the Bruce Platuau and the Larissa Site Beta Ice Core Site

LARISSA Site Beta Barilari Bay Scar Inlet Ice Shelf

East versus West : how are they thermally and dynamically different?

Future

These preliminary experiments suggest further experiments:

- 1. Integrate the heat flow model (include viscous strain heating) to explore the onset of fast flow
 - 2. Improve the orographic precipitation pattern
- 3. Apply stochastic or data-driven accumulation history to see how much the divide moves over centennial timescales and how much this change in catchment area would affect the downstream dynamics (if at all).
 - 4. Incorporate a realistic width of the flow band and realistic rheological properties to more accurately capture the flow patterns.