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Ice velocities across the grounding line...

ice interior are slowed by ice-shelf buttressing

increase strongly with g.l. depth (h]

roundin
I?rmgt b oasar So, if ice-shelf buttressing is lost, and the
1Y bed deepens upstream...then possibility of

runaway retreat !

Weertman (1976, Nature); Mercer (1978, Nature); Schoof (2007, JGR)
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Outline

1. 3-D ice sheet-shelf model

2. Last 5 Myr, vs. ANDRILL record

3. Same model run into future O(10°) years

- Prescribed sub-ice-shelf oceanic melting — WAIS retreat?

- Precipitation variations added

- Different melting for different ice shelves




Predicts ice thickness, temperature,
bedrock elevation. 40 km grid size.
Follows standard model lineage

PLUS:

Hybrid combination of the 2 scaled
equations for shearing (grounded interior
and stretching (floating/stream) ice flow

C. Schoof’s (2007,JGR) parameterization
of flux across grounding lines (q,). Allows
realistic grounding-line migration and ice-
shelf buttressing

Simple parameterizations of forcings

- sea level

- surface mass balance and temperature
- sub-ice-shelf oceanic melt rate
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Model Antarctic ice volume, last 5 mi
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®* ~5to 3 Ma: Long periods with open ocean
® ~3to 1 Ma: Cooling trend

®* ~1to 0 Ma: Current glacial cycles

Closest model grid point and ANDRILL core agree:
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Future WAIS Collapse? — previous work

Huybrechts and de Wolde, J. Clim., 1999

® Previous 3-D ice sheet-shelf models have found that:

- Sub-ice-shelf oceanic melting is likely to be dominant,

via shelf thinning — loss of buttressing — marine instability /| Also:
/| Warner and Budd
(Ann. Glac., 1998);

Swingedouw et al.
(GRL, 2008)

- Melt rates of a few meters per year under large shelves
= marine WAIS collapse in O(103) years

® We add: e ey
- Schoof (JGR, 2007) grounding-line flux treatment

3000 AD

- “Validation” vs. ANDRILL Plio-Pleistocene and last deglaciation

® Future scenarios of oceanic melting are not yet available.
We use a simple parameterization, and prescribed step-function increase

CAVITY OWVERTURNING CIRCULATION

Modern ocean melt
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Nested domain over West Antarctica

Continental Antarctica, 20 km grid Nested WAIS, 10 km grid
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Ocean melt = 2 m/yr for interior shelves
0 to 3000 yr

field=HSH tfime=

rounded ice
surface
elevation (m)

Floating Ice
thickness (m)




Ice surface velocities (m/y) Graphics by Chuck Anderson, EESI, Penn State
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Ocean melt = “infinity”

0 to 500 yr
field=HSH tfime=

Grounded ice
surface
elevation (m)

Floating Ice
thickness (m)




300 or 30Q0 yr?-._

Given plausible future increases in sub-ice-shelf ocean melting,
central WAIS is likely to collapse

Time scale of collapse depends on magnitude of sub-ice ocean melt:

- 2 m/yr — ~3000 years, oo m/yr — ~300 years
- What future melt rates for the major ice shelves?
... Will need Regional Ocean Models and GCMs for projections.
< _Different rates for different embayments? Already ~30 m/yr for PIG-TGI——

Net sea level contribution is reduced by future Antarctic snowfall
(from ~3 m to 2 m?)
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