Effects of waves on ice shelves The other form of ice-shelf ocean interaction

Olga Sergienko

with inspiration from Peter Bromirski and Doug MacAyeal

Wilkins winter break up

WaveWatch III™

Foto: Joe Harrigan

Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere

Douglas R. MacAyeal, ¹ Emile A. Okal, ² Richard C. Aster, ³ Jeremy N. Bassis, ⁴ Kelly M. Brunt, ¹ L. Mac. Cathles, ¹ Robert Drucker, ⁵ Helen A. Fricker, ⁴ Young-Jin Kim, ¹ Seelye Martin, ⁵ Marianne H. Okal, ¹ Olga V. Sergienko, ⁸ Mark P. Sponsler, ⁶ and Jonathan E. Thom⁷ Sea-ice cover minimum

Seismogram from Nascent Iceberg

courtesy of P. Bromirski (Scripps)

1. Ice is elastic \rightarrow Hook's law

2. Water is irrotational and inviscid \rightarrow potential flow

Long wave approximation $\lambda = T\sqrt{gH_w} >> H_w$

$$\sigma'_{xx} = \frac{1}{2} E H \eta_{xx}$$

$$R = \frac{B}{A}$$

Wave-induced stress

 $H = 300 \text{ m}, H_{w} = 600 \text{ m}$

6 km wave

$$\max(\sigma'_{xx})$$
, kPa

Effects of waves with various lengths

R 6 km 500 0.5 400 0.4 Е 1³⁰⁰ 0.3 0.2 200 0.1 100 10 km 500 0.3 400 ε ± ³⁰⁰ 0.2 200 0.1 100 16 km 500 0.3 400 Е 1 ³⁰⁰ 0.2 200 0.1 100 20 km 500 0.3 е⁴⁰⁰ ±³⁰⁰ 0.2 200 0.1 100 1.5 2.5 3.5 4.5 2 3 4 5 H_w H

6 km 500 400 5 ε ±³⁰⁰⁻ 4 200 100 10 km 500 3.5 3 400 E ± 300 2.5 2 200 1.5 100 16 km 500 400 1.5 ε ± ³⁰⁰ 200 0.5 100 20 km 500 1.2 400 1 ε ±³⁰⁰ 0.8 0.6 200 0.4 0.2 100 $\frac{3}{H_w}$ 1.5 2 2.5 3.5 4.5 5 4

 $\max(\sigma'_{xx}), kPa$

Normal modes free oscillations

$$\omega_n^2 = \kappa_n^2 H_c \frac{D\kappa_n^4 + \rho_w g}{\kappa_n^4 \rho_i H_c H + \rho_w}$$

$$\kappa_n \approx \frac{\pi}{L} (n + \frac{1}{6})$$

Periods of normal mods

Summary

- Wave-induced stresses are <u>additional</u> to all other stresses
- Wave impacts are cyclic and superimposable
- **I**mplications
 - might trigger ice-shelf collapse
 might control calving

Long wave approximation $\lambda >> H_w$

I $\eta_t + H_c \Phi_{xx} = 0$ II $\Phi_{tt} + gH_w \Phi_{xx} = 0$

 $\rho_i H\eta_{tt} = -D\eta_x^{IV} - \rho_w \Phi_t - \rho_w g\eta$

$$D = \frac{E H^3}{12(1-v^2)}$$

Long wave approximation $\lambda >> H_w$

$$\Phi = e^{i\omega t} \sum \varphi e^{i \varkappa x}$$
$$\eta = e^{i\omega t} \sum \zeta e^{i \varkappa x}$$

Ι

Π

$$\Phi = Ae^{i(\omega t + kx)} + Be^{i(\omega t - kx)}$$

$$\omega = k \sqrt{gH_{w}}$$

 $H_c \varkappa^2 (D \varkappa^4 + \rho_w g - \omega^2 \rho_i H) + \omega^2 \rho_w = 0$

Steady-state deviatoric stresses

