Operation IceBridge

ICESat 2003 - 2009

Operation IceBridge 2009 - 2016

CryoSat-2 2010 - 2015

ICESat-2 2015-2020
• IceBridge will produce a robust, cross-calibrated 17-year time series of ice sheet and sea ice elevation data together with ICESat, CryoSat-2, and ICESat-2

• The 17-year time series will be the definitive resource for predictive models of sea ice and ice sheet behavior

• In addition to laser altimetry, IceBridge is using the most comprehensive and sophisticated suite of instruments ever flown in polar research to yield an unprecedented three-dimensional view of the Arctic and Antarctic ice sheets, ice shelves, and the sea ice
2008: feasibility and cost analysis: “An analysis and summary of options for collecting ICESat-like data from aircraft”

2009: solicited proposals for instruments for DC-8 campaign Punta Arenas and Greenland

2010: ad hoc community-based steering committee responsible for flight planning

2010: ROSES call for instrument teams and IceBridge Science Team members

IceBridge Science Team and instrument teams selected based on competitive proposals

shift from ad hoc steering committee to directed mission: level 1 science requirements and science justification

2011: ROSES call for IceBridge science
Earth Science Division (NASA HQ)

Flight Programs
Research & Analysis
Earth Science Data Systems

Earth Science Data Systems

Project Science Office (GSFC)

Project Management (WFF)
Science Team

Project Management (WFF)

Science Team

Aircraft Operators

P-3B (WFF)
DC-8 (DFRC)
B-200 (LaRC)
ESPO Campaign Logistics (Ames)

BT-67/DC-3T (KBAL)
DHC-3 (Ultima Thule)
G-V (NSF/NCAR)

Instrument Teams

ATM LiDAR
LVIS LiDAR
KU CReSIS
LDEO/SGL/USGS

DMS Aerial Photography
UTIG (BT-67)
UAF (DHC-3)
NSERC (DC-8)

Science Working Group

NSIDC
EOSDIS (GSFC)

Earth Science Data Systems

Earth Science Division (NASA HQ)

Flight Programs
Research & Analysis
Earth Science Data Systems

Project Science Office (GSFC)

Project Management (WFF)
Science Team

Aircraft Operators

P-3B (WFF)
DC-8 (DFRC)
B-200 (LaRC)
ESPO Campaign Logistics (Ames)

BT-67/DC-3T (KBAL)
DHC-3 (Ultima Thule)
G-V (NSF/NCAR)

Instrument Teams

ATM LiDAR
LVIS LiDAR
KU CReSIS
LDEO/SGL/USGS

DMS Aerial Photography
UTIG (BT-67)
UAF (DHC-3)
NSERC (DC-8)

Science Working Group

NSIDC
EOSDIS (GSFC)
Platform and Instrument Suite

Northern Hemisphere

Wallops P-3B (Arctic Ocean & Greenland)
- 2 ATM laser altimeters (NASA/GSFC/WFF)
- MCoRDS radar sounder (CReSIS/KU)
- Accumulation radar (CReSIS/KU)
- Snow radar (CReSIS/KU)
- Ku-band radar altimeter (CReSIS/KU)
- Digital Mapping System (NASA/Ames)
- Gravimeter (Sander Geophysics/CU)
- Magnetometer (Sander Geophysics/CU)

Langley B-200 (Southern Greenland)
- LVIS laser altimeter (NASA/GSFC)

UAF DHC-3 (Southeast Alaska)
- Riegl laser altimeter (UAF)
- WISE radar sounders (NASA/JPL)

Southern Hemisphere

Dryden DC-8 (S Ocean & Antarctica)
- 2 ATM laser altimeters (NASA/GSFC/WFF)
- MCoRDS radar sounder (CReSIS/KU)
- Snow radar (CReSIS/KU)
- Ku-band radar altimeter (CReSIS/KU)
- Digital Mapping System (NASA/Ames)
- Gravimeter (Sander Geophysics/CU)
- Onboard data system (NSERC/UND)

NSF/NCAR G-V (Antarctica)
- LVIS laser altimeter (NASA/GSFC)

ICECAP/UTIG DC-3/BT-67 (Antarctica)
- Riegl laser profiler (UTIG)
- Photon counting laser scanner (Sigma Space)
- HiCARS radar depth sounder (UTIG)
- BGM-3 gravimeter (UTIG)
- Magnetometer (UTIG)

Total of 6 aircraft and 16 science instruments
- largest external structure ever flown on a P-3
- designed, built, and installed in only 3 months
Next Phase of IceBridge

Ikhana and Global Hawk
IceBridge monitors rapidly changing regions. Survey areas are growing in size due to inland spreading of thinning.

Colors indicate mass loss determined from GRACE (S. Luthcke, unpublished data).
IceBridge is imaging Ice Sheets in unprecedented detail
Greenland 2011: CryoSat-2 underflight, March 29
MCoRDS Radar Quick Look Image

Data Frame ID: 20110329_02_020

- Ice surface
- Internal layers
- Folding
- Bedrock
IceBridge is imaging Ice Sheets in unprecedented detail
Greenland 2011: CryoSat-2 underflight, March 29
Snow radar (left) and Ku-band radar (right) Quick Look Images
IceBridge is imaging ice sheets in unprecedented detail.

Unique 15 element antenna array for radar imaging on P-3 allows for SAR mapping of bedrock below the glacier.

High-resolution (500 m) Survey of Russell Glacier, Greenland to produce bedrock elevation for improved ice sheet models.

Data: John Paden, CReSIS
Accuracy and Resolution

The accuracy and spatial resolution of bathymetry inverted from airborne gravity depends on many factors:

- resolution of airborne gravimeter system
- flying speed
- distance between gravity sensor and the sub-surface density contrast
- flight line spacing
- ruggedness of the bathymetry
- knowledge of bedrock densities
- knowledge of lateral density variations from geologic sources
- availability of independent data such as: multibeam bathymetry, ice-penetrating radar and seismic data

Useful to know: a 25 meter undulation in water depth at 1000 m depth causes a change in the gravity field at the surface of about 1 mGal (roughly the uncertainty in the data).
A. Multi-beam bathymetry in Pine Island Bay (F. Nitsche et al., unpublished data). The image is 40 40 km wide with 50 m contours ranging from 1100 m to 250 m water depth. Darker colors indicate deeper bathymetry.

B. Forward model of the free-air gravity anomaly (in mGal) at flight elevation (500 m ASL) using bathymetry from A). This is the gravity field an ideal gravimeter could measure.
C. Simulated gravity effect of the bedrock/water interface at flight elevation that an AIRGrav system flown at 150 m/s can detect.

D. Bathymetry estimated from simulated airborne gravity data (left) at 500 m above ground level and 150 m/s speed of the survey aircraft.
E. Multi-beam bathymetry in Pine Island Bay (F. Nitsche et al., unpublished data). The image is 40 × 40 km wide with 50 m contours ranging from 1100 m to 250 m water depth. Darker colors indicate deeper bathymetry.

F. Bathymetry estimated from simulated airborne gravity data (left) at 500 m above ground level and 150 m/s speed of the survey aircraft.
G. Difference between bathymetry estimated from simulated airborne gravity and observed multi-beam bathymetry. The minimum difference is -238 m and the maximum is 337 m.

H. Histogram distribution of the difference between bathymetry estimated from simulated airborne gravity and observed multi-beam bathymetry. The standard deviation is 75 m.
E. Difference between gravity inversion minus autosub (meters). Negative numbers indicate gravity inversion is below autosub bathymetry and positive numbers mean gravity inversion is above autosub bathymetry.

F. Histogram distribution of the difference between bathymetry estimated from inverted airborne gravity and autosub (meters). The standard deviation is 96 m.
IceBridge and the Research Community

IceBridge seeks the involvement of the broad research community to:

- Use IceBridge data to measure and understand current changes in ice thickness
- Incorporate IceBridge data into predictive models of changing ice cover
- Use IceBridge data to improve and enhance the ICESat data set, the developing CryoSat-2 data set and the planned ICESat-2 data set

In addition, we seek community contributions that:

- Vet the scientific accuracy and usability of IceBridge data and data products
- Develop new techniques and algorithms necessary to address IceBridge Projected Science Requirements: http://bprc.osu.edu/rsl/IST/
Operation IceBridge:
http://www.nasa.gov/icebridge

Science Team:
http://bprc.osu.edu/rsl/IST/

Data is available at
National Snow and Ice Data Center (NSIDC)
http://nsidc.org/data/icebridge/
No period of exclusivity!

Flight planning tool:
http://icebridge.sr.unh.edu/icebridge/ant/