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Our objective is to find the basal flow law for Bindschadler Ice Stream

I That is, we want to find the exponent m in the power-law relationship

τb(u) = β2u
1
m

I Higher exponents lead to greater acceleration and interior drawdown
when buttressing is lost*

* Price et al., J. Glaciol., 2008; Joughin et al., J. Glaciol., 2009
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Inversions of time-averaged surface velocity to find basal flow laws
can be ambiguous

Joughin et al., JGR, 2004
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The motion of Bindschadler Ice Stream is affected by tides
under Ross Ice Shelf

Anandakrishnan et al., GRL, 2003
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A model that considers elastic perturbations can distinguish
between basal flow laws

Maxwell viscoelastic material

I Stress is the same across both elements
I Strain is the sum of strains on each element

∂tσ = E∂tε−
E
2ν σ = E∂xu − E

2ν σ
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Using Maxwell rheology in a 1D flowline model lets us calculate
perturbation velocity and stress

I Velocity ends up being determined by a diffusion equation:

∂x

(
2hE
{
∂x ũ − σ̃

2ν

})
=
β2

m (u + ũ)
1
m−1 ∂t ũ

I We’re assuming that ice thickness doesn’t change, and that viscosity
and basal drag can be found by fitting the original flowline model to
InSAR velocity data (for each m).

I We run the time series of velocity perturbations at the grounding line
through a harmonic analysis program* to find tidal components, and
use this to force the model.

* T_TIDE, Pawlowicz et al., 2002
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An “effectively plastic” bed (8 ≤ m <∞) best matches the observations
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This suggests that Bindschadler Ice Stream would respond rapidly and
significantly to any future loss of buttressing from the Ross Ice Shelf

I Previous studies* of Rutford Ice Stream found lower exponents
(m ≈ 3) more consistent with deformation over a hard or frozen bed

I Our results are more consistent with sliding over weakly
velocity-strengthening till

I We need more coordinated observation and modeling studies on other
ice streams

* Gudmundsson, The Cryosphere, 2011
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