Ice Stream Dynamics Near the Siple Coast Grounding Line: GPS and Passive Seismic Observations

Paul Winberry, Sridhar Anandakrishnan, Don Voigt, Richard Alley

Bob Bindschadler NASA-Goddard Matt King Univ. of Newcastle

Penn State Univ.

lan Joughin Univ. of Washington

Funding by NSF OPP

2003-2004 Field Season

This talk....

GPS derived velocities: isD 10 and 90 km from grounding Line IsE 10 km from the Grounding

Tide from a station down stream of isD grounding line.

Passive Siesmic Obervations

10 km from the gounding line on on isD and isE

GPS velocities

Tide regulates strong (1 m/day) daily _ fluctuations in ice stream velocity

Peak velocity on falling tide. (Anandakrishnan et al. 2003)

Variation in velocity is higher at spring tide

Tida Height (lower avg. velocity) than E.

GPS Velocities

GPS velocities

Not only daily variations in stream velocity but longer term changes

GPS velocities

The higher the tide range the faster the flow

Both streams are modulated in the same way.

Passive Seismic

Passive seismic survey listens for icequakes produced by glacier sliding: Tells us about the frictional properties of the ice stream bed

Passive Seismic: Ice Stream Beds

The number of bed events should Provide info about the frictional nature of the bed

Passive Seismic: Ice Stream Beds

D010

The bed isE offers much more resistance to flow

Conclusions

- Tides modulate velocity of ice streams D and E on sub-day scale.
- Tidal range modulates velocity on dayweek scale (2-3%)
- The bed of E offers more resistance to flow (friction) than D.
- D and E: same velocity, different bed.

