Geological Evidence for Subglacial floods: example from Pine Island Bay, West Antarctica

Alexandra E. Kirshner, Carolyn M. Branecky, John B. Anderson · Rice University, Houston, TX
Witold Szczuciński · Adam Mickiewicz University, Poznan, Poland
Dustin Schroeder and Don Blankenship, University of Texas Institute of Geophysics, Austin, TX
Martin Jakobsson, Stockholm University, Stockholm, Sweden
Geological Record of subglacial floods

Hughes, 1991
Lowe and Anderson, 2003, J. Glaciology
Marguerite Bay

(Anderson and Oakes, 2008, Geomorphology)
Where these subglacial drainage systems active during the post-LGM retreat of the ice sheet?

What evidence is there that subglacial water contributed to ice stream instability in the past?
Stagnation of ice stream C, West Antarctica by water piracy
Sridhar Anandakrishnan and Richard B. Alley

An Active Subglacial Water System in West Antarctica Mapped from Space
Helen Amanda Fricker,1 2 Ted Scambos,1, 3 Robert Bindschadler,1 Laurie Pfeffer2

Rapid discharge connects Antarctic subglacial lakes
Duncan J. Wingham2, 4, 5, 6, 7, Martin J. Siegert,1 Andrew Shepherd1, 3, 5, 7, Alan S. Male7

Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry
Laurence Gray1, 2, 5, 7, Im Joughin1, 2, 3, 5, 7, Slawek Tulaczyk4, 5, 7, Vandy Blue Spikes5, 7, Robert Bindschadler1, 3, 5, 7, and Ken Jezek2

Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008
Helen Amanda FRICKER,1 Ted SCAMBOS2

High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes
A. P. Wright1, M. J. Siegert1, A. M. Le Brocq2, and D. B. Gog2

Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods
Leigh A. Stearns2, 3, 4, 5, 6 Benjamin E. Smith1, 3, 4, 5, 6, and Gordon S. Hamilton1, 3, 4, 5, 6

1Climate Change Institute, University of Maine, 3640 Carriage Hill Drive, Orono, Maine 04469, USA
2U.S. Geological Survey, 406 Wheeler Laboratory, Washington, DC 20460, USA
3College of Earth and Ocean Sciences, University of Washington, Seattle, WA 98195, USA
4DART Associated Center, University of Maine, Orono, ME 04469, USA
5Dartmouth College, Hanover, NH 03755, USA
6Geophysical Institute, University of Alaska, Fairbanks, AK 99775, USA
7Shearwater Research, 28 South Street, Edgewood, NH 03046, USA
Subglacial Water Storage Potential

Interior basin of Pine Island Bay → isolated basins and connected basins.

Deep Basins storage capacity of ~70 km3 stagnant water
Fig. 7: Digitized lineations indicating ice flow (black), minor (blue) and major meltwater channels (red with arrows). The extent of swath bathymetry data is shown as gray shaded area. Light and dark gray shaded areas represent ice shelves and land, respectively, from the Antarctic Digital Database v6 (http://www.add.scar.org).

Nitsche et al., 2012
Punctuated retreat of ice sheet from the continental shelf in both areas is indicated by wedges and other features.

Movement of water may be due to changing ice profile or shallowing of the grounding line, reaching a critical level in the hydraulic potential.
Where these subglacial drainage systems active during the post-LGM retreat of the ice sheet?
Meltwater? derived sediments
Timing?
Widespread distribution pattern and accumulation at multiple water depths indicates dispersal by surface currents.
AutoSub mission beneath the modern Pine Island ice shelf support the presence of suspended sediment and transport of this sediment by ocean currents.
Distinguishing Transport Mechanism

Grain shape and texture of silt grains indicate glacial abrasion and transport with no significant alteration of grains.

High Kaolinite concentration of clay fraction indicates non-glacial source.
The sediment accumulation rates for subunit 1A are an order of magnitude faster than rates for subunit 1B. Current rates are on the order of 1 mm/yr, which implies high erosion rates.
We present measurements of ice thickness, gravimetry and surface elevation on Pine Island Glacier, West Antarctica, separated by a period of 49 years. At one station, on the main trunk of the glacier we measured a surface elevation lowering with no significant change in ice thickness. We interpret these as indicating subglacial erosion of 31.8 ± 13.4 m at this location, at a mean rate over the measurement period of 0.6 ± 0.3 m and suggest that a current erosion rate of 1 m a−1 is possible.
Conclusion

• Well organized subglacial drainage networks occur in Pine Island Bay and in Marguerite Bay where extensive paleodrainage areas of paleo-ice streams have been mapped in detail.

• There is sufficient connectivity between channels and basins to enable organized drainage once a critical level in hydraulic potential has been met.

• Both areas experienced post-LGM histories with punctuated back-stepping grounding lines throughout their retreat from the continental shelf.

• Sediment cores from both areas sampled well sorted silts that are interpreted as having been derived from subglacial meltwater and dispersed by surface currents.

• The youngest “plumite” deposit is a modern deposit. Its relatively high accumulation rate is consistent with high erosion rates that have been observed beneath PIG (Smith et al., 2012).