Density Driven Circulation under Antarctic Ice Shelves: An investigation using laboratory experiments

Alon Stern – Courant Institute of Mathematical Science - October, 2013 Collaborators: David Holland, Paul Holland, Adrian Jenkins, Joel Sommaria

Outline:

- Motivation and physical setup
- Experimental setup
- Results
- Concluding remarks

Motivation:

The "Ice Pump"

Figure 1: Schematic diagram of processes beneath an idealised ice shelf.

Experimental setup

Rotating table at Coriolis Lab

Particle Image Velocimetry

Laser Induced Florescence

Typical Density Field

Depth integrated vorticity

Time mean meridional Velocity Field

Zonal Velocity

Time mean density field

Dense and Fresh Plumes

Shelf geometries and buoyancy fluxes

Time mean meridional volume flux for different geometries

Dense plumes for different geometries

Schematic summarizing the results

Conclusions

- A density driven current under an "ice shelf" has been successfully reproduced in a laboratory setting.
- Results confirm the dynamic significance of the ice shelf front as a dynamical barrier.
- Strong boundary currents which run along the sides of the domain are responsible for a large percent of the flow into the ice shelf cavity.
- The strength of the dynamical barrier is sensitive to the ice shelf geometry and the flux of dense and fresh water.
- Recent advancements is quantitative velocity and density measurement techniques mean that laboratory experiments could be a useful way to learn about ice shelf cavity circulation.

Extra Slides

Integration box at time=t

An idealized ice shelf

Ice Shelves around Antarctica

