Analysis of a high resolution, three-dimensional GPR dataset from the margin of Rutford Ice Stream, West Antarctica.

Edward King and David Vaughan

British Antarctic Survey, Cambridge, UK

Or How to enter the dragons den and not be eaten

Ice stream margin crevasse zones:

History:

•Depth to the shallowest crevasses has been used to date the cessation of flow

Underlying assumption is that crevasses in an active margin are open to the surface
Interpretation of the depth to the crevasse

was based on time to the crest of hyperbolae on the unmigrated radar profile

Retzlaff and Bentley (1993)

Objective and questions:

•Establish the radar signature of crevasses in a currently-active ice stream margin

- •Can a margin be active and have no open crevasses?
- •What gives rise to hyperbolae in GPR profiles over crevasses?
- •At what depth are the point diffractors that give rise to hyperbolae?
- •What is the orientation of crevasses within an active margin?

Ground radar locations on Rutford Margin – MODIS imagery

Contoured map shows troughs above crevasses
Red lines = reflectors traceable between crevasses
Black lines = interpreted trends of crevasses

Data acquired with Pulse Ekko GPR Operating at 200 MHz.

Processed with bandpass filter and spherical divergence compensation.

This profile unmigrated.

British

Data acquired with Pulse Ekko GPR Operating at 200 MHz.

Processed with bandpass filter and spherical divergence compensation.

This profile migrated.

F63D01_11cdp F63D03_1mig =63D01_10cdp F63D01 63D01_06cdp F63D01_9cdp F63D01 F63D01_ 63D01_02cdp F63D01_3cdp 63D01_07cdp 3001 04cdp 08cdp 5cdp F63D03_1mig F63D03_2mig F63D03_2mig F63D03_3mig F63D03_3mig f63d03_4mig f63d03_4mig F63Dag_5mig F63D03_5mig Smit F63D03__6mig F63D03_7mig F63D03_7mig F63D03_8mig F63D03_8mlg F63D03_9mlg F63D03_9mig F63D03_10mig F63D03_10mig F63D02_111mig F63D086300001ig F63D02_2 F63D02_2 F63D02_3 F63D02_3 F63D02_4 F63D02_4 F63D02_5 F63D02_5 F63D02_6 F63D02_6 F63D02_7 F63D02_7 F63D02_8 F63D02_8 F63D02_9 F63D02_9 F63D02_10 F63D02_10 F63D02_11 F63D02_11

Middle Margin survey crevasse trends

Conclusions:

- 1. Active margins do not necessarily have crevasses open to the surface.
- 2. Radar hyperbolae arise from at least three locations (and depths) within a crevasse:
 - Synclines above the crevasse (i.e. Sagging bridges)
 - Reflector terminations in the side wall of the crevasse
 - Debris blocks in the base of the crevasse
- 3. The highest amplitude hyperbolae arise from the collapsed blocks at the bottom of the crevasse not from the top.

Implications:

- •Don't assume that the crest of an hyperbola = the top of a crevasse
- •Don't assume that because crevasses are buried, the margin is inactive
- •Don't assume that because a margin is active, you can't get radar data there
- •Don't assume that the crevasses in a margin will all be at 45 degrees

