Controls and consequences of rapid environmental change on the atmosphere–sea ice–ocean system in the Larsen Ice Shelf area

Mattias Cape and Maria Vernet
Scripps Institution of Oceanography, La Jolla, CA

Eugene Domack
Hamilton College, Clinton, NY

Ted Scambos
NSIDC, University of Colorado, Boulder, CO

Pedro Skvarca
Instituto Antártico Argentino, Buenos Aires, Argentina

Gunnar Spreen
Norwegian Polar Institute, Tromsø, Norway
Antarctic Peninsula – physical setting

Cook and Vaughan 2010
Larsen B collapse: system response

- Gradual retreat, rapid collapse 2002 (3250km²)
- Disintegration attributed to large regional warming, melt (Scambos et al. 2003, van den Broeke 2005)
- Cryosphere - ocean impacts
- Ecosystem implications
LARISSA: Marine ecosystem response

Open water area (SSM/I, AMSR-E) and net primary production (MODIS-A, SeaWiFS), Larsen B

- High rates of primary production
- Yearly rates reach 200 g C m\(^{-2}\) yr\(^{-1}\) – new hotspots
- High seasonal and inter-annual variability driven by sea ice (open water area)
Drivers of sea ice variability

- Open water periods linked to:
 - stronger SLP gradient
 - higher air temperature
 - enhanced cross-peninsula flow
Föhn mechanism

- Synoptic forcing leads to higher incidence of air flow over the peninsula
 - SAM+, stronger low-level westerlies
- Orographically induced ascent of westerlies -> advection of warm, dry air to the surface on the leeward side
- Föhn events persistent over days – weeks
Föhn detection

Following Speirs et al. 2010, others

- Warming $\geq 1 ^\circ C / \text{hour}$
- Decrease RH $\geq 5\% / \text{hour}$
- Wind speed $> 5 \text{ m/s}$
- Wind direction from W

- Föhn day recorded for events lasting 6 hours or more

Map of ground station locations

WAIS workshop, October 1, 2013
Föhn variability

Met observations from Robertson Island with föhn events highlighted (June 2010)

- Following Speirs et al. 2010, others
 - Warming $\geq 1 ^\circ C$ / hour
 - Decrease RH ≥ 5 % / hour
 - Wind speed > 5 m/s
 - Wind direction from W

- Föhn day recorded for events lasting 6 hours or more
Föhn variability

- Föhn winds frequently seen in the Larsen B embayment
- Large seasonal and inter-annual variability in wind frequency and duration
Föhn effect on temperature regime

- Higher frequency of föhn winds impact mean regional temperature
- Weakest response in the summer
Larsen embayments as polynyas

- Opening of Larsen A, B tied to intensity, frequency of fohn winds
- Larsen B shows rapid response to wind dynamics
Larsen embayments as polynyas

- Opening of Larsen A, B tied to intensity, frequency of fohn winds
- Larsen B shows rapid response to wind dynamics

WAIS workshop, October 1, 2013
Föhn forcing and climate

- Positive SAM associated with:
 - Increased percentage of föhn days in the spring
 - Higher mean temperature in the summer

<table>
<thead>
<tr>
<th>Observation</th>
<th>Season</th>
<th>Nino3.4 (rho)</th>
<th>SAM (rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Föhn Days (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJF</td>
<td>0.04</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>MAM</td>
<td>0.26</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>JJA</td>
<td>-0.74</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>SON</td>
<td>-0.54</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Mean temp (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJF</td>
<td>-0.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>MAM</td>
<td>-0.08</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>JJA</td>
<td>-0.57</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>SON</td>
<td>-0.57</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

- Spring: opening of the embayments
- Summer: persistence of open water conditions
Conclusions

- Larsen embayments are hotspots of production – sometimes
- Production constrained by sea ice dynamics
- Sea ice (open water) dynamics function of synoptic circulation, regional effects (föhn)
 - Links to climate (SAM) – spring and summer
- Atmospheric forcing on cryosphere impacts marine ecosystem
Thank you!