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lce stream variability

Hulbs & Fahnestook 2007
lce streams exhibit strong variability on

centennial/millennial time scales .



lce stream grounding line variabllity

Evidence of relict
grounding lines
(Catania et al. 2005)
and grounding zone
< ~ = = wedges (Dowdeswell
ot g 2 et al. 2008) from the
/e Siple Coast indicate

e significant (100 km)
- . ".. ¥ grounding line

g% variability in the
present and past.

grounding line

Catania et al. 2005



Central questions

1. What is the mechanism and spatial
structure of internal ice stream variability

2. How is internal ice stream variability
manifested at the grounding zone"?

3. How is ice stream internal variability
impacted by buttressing?



lce Stream Model Details

Flowline model with momlentum equation:

0., +G.H ‘u‘ﬁ_lu+rb =7,

X~ XX

Mass Continuity: o u+o,w=0

T, set by undrained plastic bed model (Tulaczyk et
al. 2000b) w/weak hydraulic diffusion.

Streamwise x-coordinate scaled by grounding line
position — mesh refined near GL.

N

< o

Separated implicit solves on h/x,, T, u

—Till water content solved explicitly to allow for ad-hoc
freeze-on while enforcing energy conservation



Experiments

(Exp. 1) Transition from steady-streaming to
thermal oscillations

(Exp. 2) Removal of buttressing in oscillatory
regime



Experiment Construction
Stability Boundary

2000

0.1

1800

Steady
Streaming

0.09
1600

&
o
o5

& [ (1400
& - (1200

o
o
J

ers

: 11000 E
=

©
o
»

i - 1800
. Thermal
- Oscillations

ISR
i

1 1 [}
Ll f
e !EE??

600

&

Geothermal Heat Flux (W/m2)

400

200

%5 10 -15 -20 -25 -30 -35 —-40
Ice Surface Temperature (°C)

Robel et al., JGR, 2013



lce Stream Thermal Oscillations
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Activation/Deactivation Propagation

Ice Thickness (m) Mean Column Temperature (deg C)
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Activation Wave

Upstream basal heat budget

becomes pOS|t|Ve, MW Geothermal Heat Flux (W/m?) 0
produced, ice slides 0.2
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Deactivation Wave

Upstream basal heat
budget becomes
negative, MW freezes-on

Velocity divergence
downstream thins
downstream ice

Basal temperature
gradient downstream
steepens, MW freezes-on
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Grounding Line Migration
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Buttressing parameterization

To investigate the how buttressing and its
removal impact the steady-state, we
parameterize at the GL stress condition:

r. =(1-f)= p,(l—&jghz

/ Pu

Buttressing
parameter
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An ice stream in the thermal
oscillation regime is stabilized by
buttressing. The removal of
buttressing can lead to a rapid
transition back to variability.
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What we've learned

Basal thermal oscillations cause stagnation
and activation which propagate as waves.

Activation at the grounding line can cause
rapid grounding line migration (~km/yr).
Deactivation can cause rapid migration
(~100°s m/yr).

Buttressing can stabilize an ice stream that
would otherwise exhibit internal variability.

robel@fas.harvard.edu
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Grid example
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