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Introduction:

Shallow-Ice Approximation:

The commonly used shallow-ice approximation neglects all

stresses except the basal drag, an assumption that is very good

for inland ice but may be very poor for fast-flowing, low-

surface slope ice streams, where longitudinal stresses may not

only be important, but may in fact be the dominant stress [2].

Higher-Order Approach:

A higher-order approach is to couple the mass- and

momentum-conservation equations (the prognostic and diag-

nostic equations [6]) and solve with no neglected stresses. In

the process of developing such a full-momentum solver in 3D,

for embedded application within the map-plane University of

Maine Ice Sheet Model (UMISM) [1], we are testing a 2D sim-

plification which models a vertical slice through the ice sheet

along a flowline.

Allows Us To:

This allows us to do two things: 1) implement and test the

complex boundary conditions that must be specified for a full-

momentum solver, and 2) evaluate when and where longitu-

dinal stresses are important or even dominant.

The Differential Equation:

Conservation of Momentum:

Conservation of momentum (ie. the balance of forces) leads to

the following equation in terms of the stress tensor σ and the

various components of the body acceleration a:

σij,j + ρai = 0 (1)

Stress components (σ) are related to strain rates (ǫ̇) through the

usual flow law, where P is the pressure, µ is an effective viscos-

ity, and δij is the Kronecker-delta (1 when i = j, 0 otherwise).

σij = δijP + 2µǫ̇ij (2)

The non-linearity of the flow law requires that the effective vis-

cosity µ depend on the strain rate invariant ǫ̇ in the following

form.

2µ = Bǫ̇
1−n

n (3)

The strain rate invariant is given by the following.

ǫ̇2 =
1

2
ǫ̇ij ǫ̇ij (4)

Expressing the strain rates in terms of the velocities

ǫ̇ij =
1

2
(ui,j + uj,i) (5)

The differential equation is then

(

δijP + 2µ
1

2
(ui,j + uj,i)

)

,j

+ ρai = 0 (6)

The usual FEM Galerkin approximation and variational leads

to the following matrix equation

(Kmn + ∆Kmn)Un = Fm (7)

The Continuity Equation

Conservation of mass leads to a continuity equation,

∂h

∂t
+ (ūih),i = ȧ (8)

where ū is the column-average of the x and y components of

the velocity field, h is the ice thickness, and ȧ is the net mass

balance at a point. This too can be solved with the FEM, again

as a matrix difference equation

(

Cmn

∆t
+ Kmn

)

hi+1

n = Fm +
Cmn

∆t
hi

n (9)

Boundary Conditions:

Specification of the differential equation describing conserva-

tion of momentum (also referred to as the “balance of forces”)

allows for two types of boundary conditions [4]: 1) Dirichlet,

where the state variable, in this case the velocity, is specified,

and 2) Neumann, where the conserved flux, in this case the

force applied on the boundary, is specified. Where the bed is

frozen, Dirichlet boundary conditions are the obvious choice,

as the velocity is zero and can be specified as such. Where

the bed is not frozen, where sliding is occurring (for example,

in ice streams, where our shallow-ice approximation breaks

down), we cannot specify the velocity, but instead must spec-

ify the force exerted on the ice by the bed in resisting its for-

ward motion.

Problems Specifying:

We know that this resistive force cannot exceed the driving

stress (if it equals the driving stress, we have the shallow-ice

solution). A temptation is to use some fraction of the driving

stress, and indeed, this approach does produce the concave

profile characteristic of an ice stream, but the fraction is hard

to define (a model parameter).

A Boundary-Layer Approach:

A better approach, and the one we have taken, is to use a

boundary-layer. We can preserve our Dirichlet-type specifi-

cation of zero velocity on the boundary, but allow greater de-

formation within the boundary layer to simulate sliding at the

bed. This soft layer can be interpreted either as a deformable

till or as a layer of water-saturated ice at the melting point

(slush). In either case its thickness will be negligible compared

with the ice thickness, and while the geometry and mechanical

properties (how thick and how soft) are still difficult to define,

at least they have a physical meaning, which is a good thing

for a model parameter to have.

Application to Thwaites Glacier:

We apply this to a flowline along the Thwaites Glacier in the

Amundsen Sea sector using excellent new data from the Air-

borne Geophysical survey of the Amundsen Sea Embayment

(AGASEA), by University of Texas [3] and British Antarctic

Survey [7] teams.

Description of Experiment

The first experiment shows the magnitude of the velocity and

the ratio of longitudinal to vertical shear stress for a sequence

of increasing area of decoupling of the ice to the bed. The slid-

ing layer is progressively softened starting at a point a speci-

fied percentage of the distance up the flowline, with maximum

softening attained at the grounding line. Percentages greater

than 100% imply that the softening started outside the mod-

eled area.

In the second experiment we show the stress ratio, the veloc-

ity magnitude, the velocity in the X direction, the vertical shear

stress, and the longitudinal stress for cases both with and with-

out Pulling Power. Here Pulling Power represents the lon-

gitudinal stress due to the imbalance of pressures within the

ice and water columns at the calving ice front, assumed to be

transmitted through the ice shelf to the grounding line.

Thwaites Velocity Data [5]:
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No Sliding, velocity magnitudes and stress ratios

Decoupling begins at 25% of flowline.

Decoupling begins at 50% of flowline.

Decoupling begins at 100% of flowline.

Decoupling begins at 200% of flowline.

Stress ratios with and without Pulling Power

Log-10 of velocity magnitudes (m/yr)

X-Velocity (m/yr)

Vertical shear stress (bars), σxy

Longitudinal stress (bars), σxx


