ON THE EFFECTS OF ICE DIVIDE MOTION ON RAYMOND BUMPS

Carlos Martín(1), Richard C. A. Hindmarsh(1), G. Hilmar Gudmundsson(1) and Francisco Navarro(2)

(1) British Antarctic Survey, UK.
(2) Universidad Politécnica de Madrid, Spain.
• Motivation
• Model description
• Ice divide Migration
 - Fast (Instantaneous forcing)
 - Slow (Linear forcing)
• Transient temperature response
• What’s wrong?
• Double-rooted bumps: anisotropy?
• Conclusions
Motivation: hints about the past
Motivation: hints about ice properties

Fletcher Promontory

Kealey ice rise
Model description

Ice flow: full Stokes (Hvidverg, 96)

Temperature: Solved in bedrock, consider temperature evolution

Sliding is considered using a viscous till layer (Pettit, 03)

Divide migration is forced by ice flux at the flanks

\[q_x(x_{flank}, t) = \int_{x_d(t)}^{x_{flank}} (a - \frac{\partial h}{\partial t})(x', t) \, dx' \]

Numerics: Finite element and semi Lagrangian methods.
Fast migration: Instantaneous forcing
Migration: Roosevelt an example of fast migration?

Data from Conway et al. (1999)
Slow migration: linear forcing
Transient temperature response to ice divide migration

\[\tau = \frac{H_d}{a} \]

\[\tau_v \ll \tau \]

\[\tau_h \approx \left(\tau / 16 \right)^* \]

\[\tau_h < \tau_T < \tau \]

* (Hindmarsh, 96)
What’s wrong? Spot the differences
Double-rooted bumps: *ad hoc* explanation

Beneath the ice divide ice should be stiffer

Double-rooted bumps can be explained with:

- $n > 10$
- $n > 5$ small deviatoric stresses (~ 10 kPa)
- Considering ice as a Bingham fluid.
- High anisotropy
Double-rooted bumps: anisotropy?

Anisotropy as in Pettit 2003, Thorsteinsson 2001
Ice divide migration

-There are traces of past ice divide migration in the radar layers geometry

Fast migration leaves Raymond bumps in a flank position which are advected with the flow while new ones develop in the new stationary position (e.g., Roosevelt Island).

Slow migration produce a tilt in the axis of the crests of the arches (e.g. Siple Dome, Kealey ice rise).

-Transient temperature effects are important when the time scale is comparable to the surface relaxation time \((\tau / \tau_{16}) \)

Ice divide properties

-Considering a standard rheology \((n \approx 3)\) and isotropy there are features that can not be explained: bump amplitude and width, surface shoulders, radar layer dips... Double-rooted bumps.

-Anisotropy?