ON THE EFFECTS OF ICE DIVIDE MOTION ON RAYMOND BUMPS

Carlos Martín⁽¹⁾, Richard C. A. Hindmarsh⁽¹⁾, G. Hilmar Gudmundsson⁽¹⁾ and Francisco Navarro⁽²⁾

(1) Brithish Antarctic Survey, UK.(2) Universidad Politécnica de Madrid, Spain.

- Motivation
- Model description
- Ice divide Migration
 - -Fast (Instantaneous forcing)
 - -Slow (Linear forcing)
- •Transient temperature response
- •What's wrong?
- •Double-rooted bumps: anisotropy?
- •Conclusions

Motivation: hints about the past

Motivation: hints about ice properties

Fletcher Promontory

Kealey ice rise

Model description

Fast migration: Instantaneous forcing

Migration: Roosevelt an example of fast migration?

Slow migration: linear forcing

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Transient temperature response to ice divide migration

What's wrong? Spot the differences

Double-rooted bumps: ad hoc explanation

Beneath the ice divide ice should be stiffer

Double-rooted bumps can be explained with:

-n>10

- -n>5 small deviatoric stresses (~10 kPa)
- -Considering ice as a Bingham fluid.
- -High anisotropy

Anisotropy as in Pettit 2003, Thorsteinsson 2001

Ice divide migration

-There are traces of past ice divide migration in the radar layers geometry

Fast migration leaves Raymond bumps in a flank position which are advected with the flow while new ones develop in the new stationary position (e.g., Roosevelt Island).

Slow migration produce a tilt in the axis of the crests of the arches (e.g. Siple Dome, Kealey ice rise).

-Transient temperature effects are important when the time scale is comparable to the surface relaxation time $(\tau_h \approx (\tau/16)^*)$

Ice divide properties

-Considering a standard rheology ($n\sim3$) and isotropy there are features that can not be explained: bump amplitude and width, surface shoulders, radar layer dips... Double-rooted bumps.

-Anisotropy?

