The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

Robert G. Bingham¹, Damon Davies¹, Edward C. King², Stephen L. Cornford³, David G. Vaughan², Jan De Rydt² and Andrew M. Smith²

¹ Glaciology & Cryosphere, School of GeoSciences, University of Edinburgh
² British Antarctic Survey, Natural Environment Research Council, Cambridge
³ Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol

With thanks to the Operations and Logistics staff of British Antarctic Survey, and the other members of the 2013/14 iSTAR traverse: Tim Gee, James Wake, Jonny Yates (BAS), Thomas Flament, Anna Hogg (Leeds), Peter Lambert (Reading)

See also poster that complements this presentation!
Introduction: iSTAR

• iSTAR: Ice Sheet Stability Research programme

• 6-year £7.4M NERC programme aiming to understand and predict future of ice in Amundsen Sea Embayment (where Antarctic ice loss greatest since 1990s).

• Simultaneous acquisition of ice stream, ice shelf and ocean measurements around Pine Island Glacier and Amundsen Sea Embayment.

The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica
Motivation for project “Dynamic Ice”

• Central question: What controls the dynamic response of Pine Island Glacier?
• Overall goal: development of models that can emulate the recent response with realistic physical processes, and can then be used to project future response (next 200 years)

• Although there have been several surveys of Pine Island Glacier over the last decade (e.g. Vaughan et al., 2006, GRL; Operation IceBridge), there are few data on smaller scale bedforms and bed properties – which may be (most?) critical for controlling basal motion.

• Radar and seismic surveys of bed therefore designed to improve knowledge of “smaller” - but critical! - bed features
iSTAR Traverse 2013/14

- Overall 900 km route designed for complementary science projects from November 2013 to January 2014
- 12 participants

The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

Radar surveys

- At six of the sites along the route, iSTAR would “pitch camp” for 2-3 days, allowing the four radar operators to radar-survey the site continuously.

Sleep-deprived scientists...

The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

Central frequency 3 MHz
Sampling interval ± 1 metres
Vertical resolution ± 3 metres
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

DELORES surveys

- At each main “radar site”, we acquired 22 15-km radar profiles orthogonal to ice flow.
- 0.5 km spacing between profiles
- Along track, after stacking etc., bed soundings were acquired every 4-5 m.

![iSTAR Traverse Route and DELORES tracks 13/14](image)

![MeASUREs ice speed (km a^{-1})](image)
“Repeat” DELORES surveys

- NB - Where iSTAR route was close to 2007/08 DELORES surveys, opportunity taken to “repeat-survey” some radar tracks.

The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

The data

• **6 x 150 km² “grids”**
 - Each consisting of 22 15-km profiles across flow, spaced by 500 m
 - 1 in central trunk, 4 in tributaries, 1 in intertributary slow-flow zone
 - 1965 km of radar tracks

• **8 x “repeat profiles”**
 - 154 km worth of tracks
 - 5 x profiles orthogonal to ice flow
 - 3 x profiles along flow
 - 7 are repeats from 2007/08 (6 year acquisition gap); 1 is a repeat from 2010/11 (3 year acquisition gap)
Results

1. Radargram processing:
 - bandpass filter, gain, migration
Results

1. Radargram processing:
 • bandpass filter, gain, migration

2. Import SEGY to Schlumberger Petrel™

3. Pick bed (semi-automatic)
Results

1. Radargram processing:
 • bandpass filter, gain, migration

2. Import SEGY to Schlumberger Petrel™

3. Pick bed (semi-automatic)

4. Create mesh of bed picks

5. Derive DEM
 50 m x 50 m
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

MeASUREs

SB6 (Tributary, $v \sim 250$ m a$^{-1}$)

SB1 (Central trunk, $v \sim 375$ m a$^{-1}$)

SB5 (Tributary, $v \sim 365$ m a$^{-1}$)

SB7 (Tributary, $v \sim 285$ m a$^{-1}$)

SB7R9 (Inter-tributary ridge, $v \sim 10$ m a$^{-1}$)

SB9 (Tributary, $v \sim 225$ m a$^{-1}$)
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica
Results: Main trunk - Site SB1 (istar07)

Ice flow
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

Results: Upstream tributaries - Sites SB6 & SB5 (istar08 & istar13)
The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

Results: Downstream tributaries - Sites SB7 & SB9 (istar15 & istar18)

- Sites SB7 & SB9 (istar15 & istar18)
- Downstream tributaries
- Elevation depth 300 m
- Peak to trough amplitude > 100 m
Results: Downstream tributaries - Sites SB7 & SB9 (istar15 & istar18)

The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica
Results: Intertributary ridge - Site SB7R9 (istar17)

The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica
Conclusions

• 6 x hi-res “bedmaps” recovered from PIG
• ~150 km of “repeat”-surveyed profiles, mostly comparing 2007/08 with 2013/14

Next steps:
• This season, active seismic surveys will be undertaken at the same sites
• Reflectivity of the bed to be calculated using both radar and seismic data – for further improved understanding of bed composition & conditions
• Detailed comparison of bed geomorphology with offshore marine geophysical data and onshore deglaciated terrains
• Input to modelling exercises: basal drag; change at the bed.

See also poster that complements this presentation!
Methods: 2. Pine Island Glacier

- 4 x reconnaissance field campaigns by BAS since 2006:
 - Preliminary ground-radar surveys
 - GPS measurements
 - Active seismic surveys at selected sites

MeASUREs

- Ice speed (km a⁻¹)

The nature and dynamics of the bed beneath Pine Island Glacier, Antarctica

Yellow tracks = DELORES surveys in 2007/08

iSTAR traverse of 2013/14 allowed considerably greater efficiency of data acquisition through facilitating larger field party
Operation of tried and tested methods in “siege campaign”!
V. Preliminary – early work on “repeat surveys”

Repeats with bed picks: T02, L01, T04, T05. looking upstream. 1314 = red pick, 0708 = yellow, 201011 = blue
Close up of T02 (background radargram is 2007/08 data)
Close up of bed bump on T02 (07/08 radargram)

Close up of bed bump on T02 (13/14 radargram)