Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica

Laurie Padman

I. Arzeno, R.C. Beardsley, R. Limeburner, B. Owens, S.R. Springer, C.L. Stewart, M.J.M. Williams + G. Moholdt, H.A. Fricker, M.S. Dinniman, S.L. Howard

Sponsored by NSF & NASA

Basal melt in the Ross Ice Shelf Frontal Zone (ISFZ)

Explain "high" melt rate (M_b) near RIS front

Moholdt et al. [in revision] Lagrangian analysis of ICESat

Ice front

Horgan et al. [2011]

Melt rate is seasonal; highest in summer (JFM)

Average $M_{\rm b}$ (m a⁻¹) for entire RIS, and ISFZ^{*} only

* ISFZ defined as within 30 km of ice front

Why seasonal? (1) Polynya insolation

Why seasonal? (2) Southward flow of MCDW

Cross-ice-front hydrographic contrasts

What we know from satellites

'High' annual-average M_b near ice front ISFZ melt ~40% of total RIS melt

Inferred from models

Melt near an ice front is seasonal

Upper-ocean heat in Ross Polynya in summer due to insolation + increased southward MCDW transport

Mode 3 melt is more responsive to annual variability of forcing than Mode 1 (grounding-line melt)

Rapid ice-front thinning & retreat driven by enhanced Mode 3 melt would accelerate dynamic ice loss

⇒ Climatological changes in <u>summer</u> ocean and sea-ice state in the Ross Polynya may affect dynamic ice loss

Now we want ...

In situ evidence for Mode 3 melt and seasonality

Improved understanding of <u>processes</u> determining seasonality, to better represent ISFZ melt in future climate states

Do we even know the <u>sign</u> of expected Mode 3 melt rate change?

Sub-ice-shelf hydrography

Time series measurements

AWS

AWS

GPS

Moorings

Ocean heat flux

 $Q_O = \rho_w C_p C_H u_* \Delta T \sim$

Where

 $u^* = C_D^{1/2} |\mathbf{u}|$

To get M_b , equate Q_o to latent heat, with correction for through-ice conduction (~20%)

2 y @ 5-day averages

6 mo @ 4-h averages

Weather-band (period of days) variability is <u>not</u> correlated with local winds:

⇒ Eddies and/or topographic-trapped waves along the ice front

Strength of these processes depends on density gradients: cross-front, and vertical:

⇒ These change with stratification in Ross Polynya and buoyant meltwater fluxes to and within the ISFZ

Summary (Ross ISFZ basal melt rate M_b)

'High' M_b near ice front (~2 m a⁻¹ cf <0.3 m a⁻¹ overall) ISFZ melt ~40% of net RIS melt

Seasonal cycle of warm upper-ocean water near the ice front; insolation + MCDW southward advection

But ...

 M_b depends on <u>high-frequency</u> ocean variability (tides, eddies, frontal instabilities) with energy that is out of phase with upper-ocean T; => more complex $M_b(t)$ signal

Implies sensitivity to interactions between atmosphere, ocean, ice shelf and sea ice at <u>short time and space scales</u>

End formal talk

Explain high melt rates near RIS front

Annual cycle: 5-day averages

Summer (2004/05) only: 4-h averages

Summary (Ross ISFZ melt)

- 'High' melt rate near ice front (~2 m a^{-1} cf <0.3 m a^{-1} overall) ISFZ melt ~40% of net RIS melt
- Seasonal cycle as warm upper-ocean water gets to ice front; insolation + MCDW southward advection
- Dependence on tides (~50%) and 'weather-band' (~50%)
- W-B appears to be 'frontal instability', not local wind forcing, and so depends on ocean stratification differences between Ross Polynya water and water under ISFZ
- Implies sensitivity to interactions between atmosphere, ocean, ice shelf and sea ice