Environment and Processes of
Subglacial Lake Whillans, West Antarctica
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Main Points

SLW sediment:
- comes from upstream and local marine sources
- shows evidence of various degrees of subglacial shear
- also evidence of recent dissolution (microbial mediation?)
- water saturated to compacted till - appears normally consolidated
- vertical clast fabric formed by decoupling during refilling
- last loading effect now over-printed

Lake discharge-recharge at low velocity

- ice recouples with lake bed at some lowstands

- till deformed into lake basin

- then ice re-floats and unloads

- no evidence of fluvial erosion or
transport in subglacial flooding events

- flood velocities too low (<0.4 m/s) to
entrain significant volumes of sediment

- water flow likely occurs in broad
anastomosing sheets
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A dynamic hydrological system
Lake is on a branch of a network of subglacial drainage
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Elev change (m)

A dynamic hydrological system
Lake discharges and refills on a period of a few years

02Mar2006
01Jun2006
02Nov2006

ICESat elevation (m)

02 Nov 2006 almost empty 725225998

08 Oct 2009 almost empty 080ct2009
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Latitude

‘ . SLW has drained twice during the
Trackd2 K4\ R - ICESat mission (2006 & 2009)

Track 53

w4 The 2009 discharge was captured

g3 during the last two ICESat campaigns

drainage drainage 4.3
Jan04 Jan05 Jan06 Jan07 Jan08 Jan09 Jan10 -
NOW refl l I I ng Fricker & Scambos 2009; Fricker et al. 2010



Geophysical team provided
definition of the lake

and best site to access
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Camp set up by SLW




Lake bottom sediment rucked-up in front of camera

Image: Alberto Behar



Major WISSARD borehole science goals were achieved

Suspended sediment filtered from
lake water onto a 0.2 micron filter

Three ~0.4 liter water samples . .
Sediment from percussion,

piston and multi-cores




Sediment core analyses

ITRAX XRF scanner & XRF
Geotek physical props scanner
X-radiography

Grain Mineralogy

Clast lithology

Biomarkers

Particle size

Clast fabric

Paleomag NRM and AMS
Grain & clast surface microtextures
Thin section micromorphology
Moisture content

Strength tests
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Below ~1m of turbid water

Local basal melting + flow from
upstream

Structureless, clast-poor (<10%)
muddy diamicton

Water saturated to compacted

Appears very homogeneous

Compare with upstream (“UpB”)

Tulaczyk et al. 1999
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X-radiographs

* homogeneous - some weak layering?
« clast abundance - variable, < 10%

 clast orientation - locally preferred

artifacts

.84m-long core 41m-long core



Homogeneity shown by ITRAX XRF

(Percussion core)
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Provenance analysis

Methods

» Clast lithology

« Sand mineralogy

« Major/trace element chemistry
* Molecular biomarkers

Clast lithologies 1158 clasts - mostly from granules to fine pebbles
317 36

798
228
I 79

felsic  intermediate  mafic
Composition of plutonic clasts

@ Sedimentary @ Metasedimentary
@ Plutonic @ Volcanic

Rebecca Putkammen



0.5-2mm sand mineralogy

SLW

Sedimentary
1%

Extrusive
1%

Mafic Intrusiv& BlEtamoIphIC
14%
<1%

Intermediate_/
Intrusive
3%

Felsic Intrusive
19%

£ Plagioclase K-Spar
Heavy Minerals 8% 16%
1%

Tulaczyk et al. 1999

Clasts and sands indicate similar sources to UpB
But there are differences



Molecular Biomarkers

Appears to suggest

« Downstream increase in marine
biomarkers

 Local source of related marine sediment

that has not been fully homogenized

Polar Compound Concentrations

m Cholesterol

H Cholestanol

m Brassicasterol
B BetaSitosterol
m Beta Sitostanol
E Dinostanot
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Jeremy Wel
MC1b0-3 MC1B 35-40 PC264.5 PEC1 3 UpB 17 UpB 237 UpC 1-2a UpC10-1 ~ ,
i mple ID Isla Castaneda’s lab

Polar compounds found in sediments:
- Brassicasterol — specific to diatoms
- Dinostanol — thought to be specific to dinoflagellates



SLW water column geochemistry

Consistency in chemical composition between three casts
Nutrients N and P present in water column

6180 indicates glacial meltwater as dominant water source
Br/Cl indicate a diluted seawater signal

pH | Na* | K* Mg2+ Ca?* Cl- | Br NO3 SO4 PO4 blc 3180
Hco3

Castl 5118 175 473 1034. 28 3657 5:L 1228 2095 38()

l
o o1 [soars sns 303 [ oo o | s | 5272 | 55 a0 [ an

Units are ueq I'1 except for 880 and pH Mark Skidmore

Br/Cl ratio of SLW is 0.00153, seawater is 0.00155 (Holiand 1978)
3.8 mM CI = 1/144 strength seawater



Particle shapes and surface textures
to assess subglacial processes and dynamics
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Clasts
angular, facetted and striated

Typical of subglacial till —
not fluvial
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Clast features compared

UpB

Striae: ~0.9% (?)
Facets: 50%
Roundness: subangular

Tulaczyk et al. 1998

SLW

Striae: 28%
Facets: 10%
Roundness: subangular

More striae but fewer facets
downstream

less bedrock interaction
more In-till contacts



¥ Surface microtexture "8

of quartz grains

fresh surface
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" conchoidal fractures
AR

by SEM on 120 grains
125-1000 um in size

JSM-6368LY Rebecca Putkammen




* Microtextures differ from UpB

 Infer a more complex history
- weathering - crushing - fracture
-> abrasion - dissolution
- =» variable shear
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SLW till particle size distribution
Finer (silt) mode to UpB

[ Gravel — 8%

4000 1000
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Sand Mode

Tulaczyk et al., 1998




Texture of sediment infers

- no sorted sediments

- may be larger volumes of water moving around during
discharge-recharge events

- but given gradients and inferred conduit size

- velocities likely to be low at <0.4ms-1in 1m deep water column
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Clast fabric

Core section shows >4mm diameter clasts
Measure apparent long-axis on 82 clasts

s
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- weak vertical fabric

- not typical sheared till fabric
- formed with decoupling?




Till microfabric

Velocity Deformation by

'SLW1-PEC1: 23.5-31cm * Ice creep
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Physical properties

Gamma Mag. Sus.
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perhaps most interesting Iis water content
and inferred consolidation




core depth (m)
o o o o o o
()] ol E-N w N [l o
T T

o
3

Consolidation vs depth

SLW till normally consolidated

appears any loading effect from last ice touch-down
during lake drainage has been compensated

theoretical hydrostatic consolidation curve

® N0 clasts >2mm

0.8 0.9 1 11 1.2
e (void ratio)

13

For hydrostatically
consolidated sediment:
N,

€= € — CplogNeO
e: void ratio

e,. ref. void ratio

C: compressibility

N,: effective normal pressure

N,,: ref. effective normal pressure
No = Nep + (pt — pu)gz
dN,

= — Pw)qg ~ 10 kPa m-1
R (Pt — pw)g

converted water content to void ratio



Environmental Interpretation

No signs of sorting or lag surfaces
- quiescent conditions in the lake
- negligible deposition or erosion of lake sediment
- “floods” not typical floods — flow only at cm/s due to
low surface gradients and wide conduits 0 g ance L)

100 [Facca003 '
F25Feb2004 Track 42 g2

SLW s g

But during ‘lowstands’ ice recouples with bed
- deforming new till into the lake
- mixes any older thin lake sediment into till

8426 -8425 -8424 -8423 -8422 -8421 -84.2(
Fricker et al. 2010 Latitude




Conclusions
SLW sediment

- homogeneous, structureless, clast poor, muddy till
- water saturated to compacted
Sediment sources
- minor differences with those of UpB
- at least a local marine component
Clasts, grains and microfabric
- a more complex transport history than UpB
- strong (but variable) glacial shear and recent dissolution
Lake discharge-recharge at low velocity (<0.4ms1)
- floods move across WIP but no sign of fluvial erosion or transport
- flow unlikely via persistent conduits, most likely in braided sheets
At some lowstands ice recouples with lake bed (last 20047?)
- till deformed into lake basin
- then re-floats and unloads
- common for lakes on ice plains but unlikely in deeper interior lakes
Till appears normally consolidated
- loading effect from last lake drainage now compensated
Clasts have weak vertical fabric
- formed with decoupling during lake refilling






