Environment and Processes of Subglacial Lake Whillans, West Antarctica

Ross Powell, Tim Hodson, Jeremy Wei, Slawek Tulaczyk, Rebecca Putkammer, Stefanie Brachfeld, Isla Castañeda, Reed Scherer and the WISSARD Science Team

Executive Committee (Excom)

Ross Powell¹

John Priscu²

Slawek Tulaczyk³

WISSARD PIs

Sridhar Anandakrishnan⁴

Brent Christner⁵

David Holland⁷

Andrew Mitchell²

- 6. Scripps Institution of Oceanography
- 7. New York University
- 8. St. Olaf College
- 9. University of Tennessee

Andy Fisher³

Bob Jacobel⁸

Reed Scherer¹

Jeff Severinghaus⁶

John Sherve

Helen Fricker⁶

Jill Mikucki⁹

- 1. Northern Illinois University
- 2. Montana State University
- 3. University of California, Santa Cruz
- 4. Pennsylvania State University
- 5. Louisiana State University

Collaborators, Post-docs & Grad Students

Iriana Alekhina¹

Carlo Barbante²

Alberto Behar³

Robin Bolsey⁴

Sasha Carter⁵

Knut Christianson⁶

Huw Horgan⁷

Susan Schwartz⁴

Mark Skidmore⁸

John Winans⁹

- 1. AARI, Russia
- 2. University of Venice, Italy
- 3. Jet Propulsion Laboratory
- 4. University of California, Santa Cruz
- 5. Scripps Institution of Oceanography

- 6. St. Olaf College
- 7. Victoria University of Wellington, NZ
- 8. Montana State University
- 9. Northern Illinois University

Main Points

SLW sediment:

- comes from upstream and local marine sources
- shows evidence of various degrees of subglacial shear
- also evidence of recent dissolution (microbial mediation?)
- water saturated to compacted till appears normally consolidated
- vertical clast fabric formed by decoupling during refilling
- last loading effect now over-printed

Lake discharge-recharge at low velocity

- ice recouples with lake bed at some lowstands
- till deformed into lake basin
- then ice re-floats and unloads
- no evidence of fluvial erosion or transport in subglacial flooding events
- flood velocities too low (<0.4 m/s) to entrain significant volumes of sediment
- water flow likely occurs in broad anastomosing sheets

A dynamic hydrological system

Lake is on a branch of a network of subglacial drainage

Carter et al., 2013

A dynamic hydrological system

Lake discharges and refills on a period of a few years

Fricker & Scambos 2009; Fricker et al. 2010

-84.20

Geophysical team provided definition of the lake

and best site to access

Traversing from McMurdo

Camp set up by SLW

Lake bottom sediment rucked-up in front of camera

Major WISSARD borehole science goals were achieved

Three ~0.4 liter water samples

Suspended sediment filtered from lake water onto a 0.2 micron filter

Sediment from percussion, piston and multi-cores

Sediment core analyses

ITRAX XRF scanner & XRF Geotek physical props scanner X-radiography **Grain Mineralogy Clast lithology Biomarkers** Particle size Clast fabric Paleomag NRM and AMS Grain & clast surface microtextures Thin section micromorphology Moisture content Strength tests

Sediment strength tests

Core degassing

- Below ~1m of turbid water
- Local basal melting + flow from upstream
- Structureless, clast-poor (<10%) muddy diamicton
- Water saturated to compacted
- Appears very homogeneous
- Compare with upstream ("UpB")

General Description

Core degassing

X-radiograph

Image through clear core liner

X-radiographs

- homogeneous some weak layering?
- clast abundance variable, < 10%
- clast orientation locally preferred

.84m-long core

.41m-long core

Homogeneity shown by ITRAX XRF (Percussion core)

Provenance analysis

<u>Methods</u>

- Clast lithology
- Sand mineralogy
- Major/trace element chemistry
- Molecular biomarkers

0.5-2mm sand mineralogy

SLW

Clasts and sands indicate similar sources to UpB But there are differences

Molecular Biomarkers

Appears to suggest

- Downstream increase in marine biomarkers
- Local source of related marine sediment that has not been fully homogenized

Polar compounds found in sediments:

- Brassicasterol specific to diatoms
- Dinostanol thought to be specific to dinoflagellates

SLW water column geochemistry

- Consistency in chemical composition between three casts
- Nutrients N and P present in water column
- δ¹⁸O indicates glacial meltwater as dominant water source
- Br/Cl indicate a diluted seawater signal

	рН	Na⁺	K+	Mg ²⁺	Ca ²⁺	F-	Cl-	Br⁻	NO ₃ -	SO42-	PO ₄ ³⁻	DIC (HCO ₃ -)	δ^{18} O
Cast 1	8.0	5118	175	473	1034	28	3657	5.1	1.4	1228	4.5	2095	-38.0
Cast 2	8.2	5285	177	477	1020	31	3827	5.8	0.7	1255	4.3	2130	-38.0
Cast 3	8.1	5389	178	486	1023	31	3904	6.6	0.4	1272	5.5	2109	-38.1

Units are ueq I⁻¹ except for $\delta^{18}O$ and pH

Mark Skidmore

Br/CI ratio of SLW is 0.00153, seawater is 0.00155 (Holland 1978)

3.8 mM Cl = 1/144 strength seawater

Particle shapes and surface textures to assess subglacial processes and dynamics

Dominant lithology – igneous & metasedimentary Typical glacial shape for lithology

Clasts angular, facetted and striated

Typical of subglacial till – not fluvial

Featur e	Percentag e of Samples
Facete d	10%
Striated	28%

Rebecca Putkammen

Clast features compared

UpB

- Striae: ~0.9% (?)
- Facets: 50%
- Roundness: subangular

SLW

- Striae: 28%
- Facets: 10%
- Roundness: subangular

More striae but fewer facets downstream

less bedrock interaction more in-till contacts

Tulaczyk et al. 1998

etched surface

JSM-6360LU

by SEM on 120 grains 125-1000 µm in size

Rebecca Putkammen

fresh surface

- Microtextures differ from UpB
- Infer a more complex history
 - weathering → crushing → fracture
 → abrasion → dissolution
 - > variable shear

SLW till particle size distribution Finer (silt) mode to UpB

Weight %

Texture of sediment infers

- no sorted sediments
- may be larger volumes of water moving around during discharge-recharge events
- but given gradients and inferred conduit size
- velocities likely to be low at <0.4ms⁻¹ in 1m deep water column

Hjustrom-Sundborg plot

Clast fabric

Core section shows >4mm diameter clasts Measure apparent long-axis on 82 clasts

270

270

270

Till microfabric

Physical properties

perhaps most interesting is water content and inferred consolidation

Consolidation vs depth

SLW till normally consolidated

appears any loading effect from last ice touch-down during lake drainage has been compensated

For hydrostatically
consolidated sediment:
$$e = e_o - C_p log \frac{N_o}{N_{eo}}$$
e: void ratio
e_o: ref. void ratio
C: compressibility
N_o: effective normal pressure
N_{eo}: ref. effective normal pressure
N_{eo}: ref. effective normal pressure
 $N_o = N_{eb} + (\rho_t - \rho_w)gz$
 $\frac{dN_e}{dz} = (\rho_t - \rho_w)g \approx 10 \text{ kPa m}^{-1}$

converted water content to void ratio

Environmental Interpretation

No signs of sorting or lag surfaces

- quiescent conditions in the lake
- negligible deposition or erosion of lake sediment
- "floods" not typical floods flow only at cm/s due to low surface gradients and wide conduits

But during 'lowstands' ice recouples with bed

- deforming new till into the lake
- mixes any older thin lake sediment into till

Conclusions

SLW sediment

- homogeneous, structureless, clast poor, muddy till
- water saturated to compacted

Sediment sources

- minor differences with those of UpB
- at least a local marine component

Clasts, grains and microfabric

- a more complex transport history than UpB
- strong (but variable) glacial shear and recent dissolution
- Lake discharge-recharge at low velocity (<0.4ms⁻¹)
 - floods move across WIP but no sign of fluvial erosion or transport
 - flow unlikely via persistent conduits, most likely in braided sheets

At some lowstands ice recouples with lake bed (last 2004?)

- till deformed into lake basin
- then re-floats and unloads
- common for lakes on ice plains but unlikely in deeper interior lakes

Till appears normally consolidated

- loading effect from last lake drainage now compensated Clasts have weak vertical fabric

- formed with decoupling during lake refilling

and the second second

100