

Photo credit Brad Lipovsky

Sasha Peter Carter, Helen A. Fricker, Matthew R. Siegfried

Scripps institution of Oceanography

Lakes are everywhere Carter et al., 2007 G-cubed

Conceptual model

- A. Sheetflow clears lake dam but does not erode
- B. Sheetflow increases, initiating erosion of tillchannel
- C. Lower pressure in channel siphons water from lake as its level declines
- Lower pressure in channel increases deformation closrure. Lower lake level provides less gradient and energy for erosion
- E. Channel ceases

Model formulation Sheetflow:

Q ~ h_{wat} * gradient_{H20} Δh_{wat} ~ inflow - outflow N ~ roughness / h_{wat}

Model formulation

Till Channel:

 $(\mathbf{0})$

$$C_{VT} = \operatorname{sgn}(N_T) \frac{A_T S_T \left(\begin{vmatrix} N_T \\ a \end{vmatrix} \right)^s}{2N_s^{\ b}} -$$

Creep closure ~ f (Water pressure / till pressure)

 $\frac{\partial Q_{T}}{\partial X} = \frac{m_{T}}{\frac{1}{\rho_{T}} - \frac{1}{\rho_{T}}} + C_{vT} + T_{T}$ Conservation of mass

 $\frac{\partial N_{T}}{\partial x} = \rho_{w} g \left(f_{T} \frac{Q_{T} |Q_{T}|}{S_{T}^{\frac{8}{3}}} - \frac{\partial \theta_{T}}{\partial x} \right) \qquad \qquad Q = f \text{ (Area * Gradient)}$

Study area / Model inputs

Results

Results

All models are wrong some models are useful

- •Channels should not be semicircular
- •We address this with a "geometry correction"
- •Channel instantly continuous between lake and next major low

Table Scale Models of water flow Catania and Paola 2001, Geology)

Figure 2.15b: Experiment P.L 3, Q=131 cm³ s⁻¹, t=27 hours

Figure 2.15c: Experiment P.L 3, Q=210 cm³ s⁻¹, t=36.1 hours

Implications for ice flow

Implications for Ice flow

Half full or Half empty

Conclusions

- •Lake drainage requires siphoning
- •Given low slopes and polar ice of Antarctica, siphoning trough sediments is more likely.
- Active lakes = basal sediment
- •Outflow and sliding begin before lake approaches maximum volume.
- •Active lakes SHOULD fail most Carter et al., 2007 radar lake classification criteria.

Distance from McMurdo station (km)