

INFERENCE OF GROUNDING-ZONE PROPERTIES FROM RADAR BASAL REFLECTIVITY, DIELECTRIC MODELING, AND BASAL-ECHO ANALYSIS

Knut Christianson, Robert W. Jacobel, Huw J. Horgan, Sridhar Anandakrishnan, David M. Holland, and Richard B. Alley

WISSARD Grounding-Zone Survey Seismic results

Determining basal reflectivity

- Estimating englacial attenuation
- Estimating basal reflectivity

Interpreting basal reflectivity

- Hydropotential and basal reflectivity
- Basal reflectivity and englacial features
- Bed-echo analysis
- Dielectric modeling

Conclusions

100 km

-84.

50

ake 8

Lake 10

Lake 12

Ice Flow

Direction

Lake 7

SLE

SLW

Whillans Ice Stream

SLN

USLC

DInSAR inland flexure limit

Active subglacial lake
Subglacial water flowpath

DInSAR seaward flexure limit

75

Ross

Ice Shelf

TIDAL AMPLITUDE

RADAR SURVEY

ESTIMATING ENGLACIAL ATTENUATION FROM THE MULTIPLE

HYDROPOTENTIAL AND BASAL REFLECTIVITY

•Why are floating areas so dim?

THE SIMPLE CASE: REFLECTIVITY AT A SUBGLACIAL PENINSULA

A MORE COMPLEX CASE: REFLECTIVITY IN SUBGLACIAL EMBAYMENT

BASAL REFLECTIVITY AND FOLD IN RADAR INTERNAL LAYERS

BASAL REFLECTIVITY CONUNDRUM

•Why so dim?

- System fault
- What is the interface?
 - Appearance of basal interface, roughness, temperature
 - Two layers or more?
 - Attenuation/skin depth
- Reflectivity modeling
- Synthetics

WATER DEPTH DISTRIBUTION

EMBAYMENT REFLECTIVITY DISTRIBUTION

BASAL REFLECTIVITY CONUNDRUM

•Why so dim?

- System fault
- What is the interface?
 - Appearance of basal interface, roughness, temperature
 - 2-layers or more?
 - Attenuation/skin depth

Reflectivity modeling

Synthetics

WATER DEPTH DISTRIBUTION

Material	Permittivity	Conductivity	Power Reflectivity	tanδ	Skin Depth
		(S m ⁻¹)	(dB)		(m)
Freshwater	79.7	1 × 10 ⁻⁶	-3.5	0.002	225
Seawater	79.7	2.7	-0.23	11.3	0.14
Groundwater	79.7	3.1×10^{-2}	-2.4	1.4	1.3
Unfrozen till (40% gw)	18	4 $.1 \times 10^{-3}$	-6.3	0.82	3.5
Unfrozen till (15% fw)	12	3 $.3 \times 10^{-5}$ to	-9.9	0.01 to 0.1	12 to 39
		3.3×10^{-4}			
Unfrozen till (45% fw)	30	8 $.3 \times 10^{-5}$ to	-5.9	0.01 to 0.1	7.8 to 25
		8.3×10^{-4}			
Unfrozen bedrock (15% gw)	6.6	7 $.5 \times 10^{-4}$	-14	0.41	8.2
Frozen till (40% gw ice)	2.8	2 $.7 \times 10^{-5}$	-30	0.035	43
Frozen bedrock (15% gw ice)	2.7	1 $.7 \times 10^{-5}$	-27	0.022	55
Marine ice	3.43	4.8×10^{-5}	-35	0.05	33
Sand	2.6	1.1 × 10 ⁻⁵	-25	0.015	68

EMBAYMENT REFLECTIVITY DISTRIBUTION

Table 1. Dielectric properties of common subglacial materials at for a 5 MHz radar wave

TWO OR THREE LAYERS?

$$R_{ab} = 20 \log_{10} \left| \frac{\sqrt{\epsilon_a} - \sqrt{\epsilon_b}}{\sqrt{\epsilon_a} + \sqrt{\epsilon_b}} \right| \qquad R_{abc} = 20 \log_{10} \left| r_{ab} + t_{ab} r_{bc} t_{ab} \frac{\exp\left(-2ik_b\delta\right)}{1 - r_{bc} r_{ab} \exp\left(-2ik_b\delta\right)} \right|$$

BASAL REFLECTIVITY: TWO- and THREE-LAYER MODELS

BASAL REFLECTIVITY: TWO- and THREE LAYER MODELS

SYNTHETIC MODELING

Conductivity is ~0.001–0.01 S/m (brackish; ~10% sediment)

CONCLUSIONS

•Dim reflectivity indicates large area of brackish water?

- ~10% sediment content
- Brackish
- •Lagged water exchange in

shallow water column

- Abruptly brightens in other areas and seaward of embayment
- Lobe ~10 m step, would take us out of a node; stepped basal topography
- Tidal anomaly larger seaward of reflectivity step
- Regional geologic control?

•Low basal-melt rate

- No strong plume circulation
- No subglacial channel melted into ice
- No accommodation space for wedges– flat deposits imaged by reflection seismology

