It's a wet, wet WAIS: Observations of current and historical snow accumulation from the Amundsen Sea sector

Brooke Medley¹, I. Joughin², B.E. Smith², S.B. Das³, E.J. Steig², H. Conway², S. Nowicki¹, S. Gogineni⁴, C. Lewis⁴, A.S. Criscitiello³, J.R. McConnell⁵, M.R. van den Broeke⁶, J.T.M. Lenaerts⁶, S.R.M. Ligtenberg⁶, D.H. Bromwich⁷, J.P Nicolas⁷, & C. Leuschen⁴

¹NASA Goddard ²U. Washington ³ WHOI ⁴CReSIS ⁵DRI ⁶IMAU ⁷OSU

Accumulation is important!

Rignot et al., Nat. Geosci., 2008

Overview

1. Recent accumulation rates

1. Track several internal horizons

- 1. Track several internal horizons
- 2. Confirm horizons are annually spaced

- 1. Track several internal horizons
- 2. Confirm horizons are annually spaced

- 1. Track several internal horizons
- 2. Confirm horizons are annually spaced
- 3. Generate >6,000 30-yr records

Medley et al., GRL, 2013

Medley et al., GRL, 2013

- No recent accumulation trend
- Evaluation of temporal variability in modeled accumulation

RACMO 2.3 Snow Radar and RACMO2.3 Records 0 65 Snow Radar RACMO2.3 Van Wessem et al., J. Glac., 2014 06 mean = 0.440 mwe per year 0.55 mulation Rate (m w.e. yr⁻¹) std = 0.060 mwe per year $r_{SR} = 0.68$ **Snow Radar** Snow Radar an 0.65 mean = 0.457 mwe per year 0.6 std = 0.056 mwe per year 1995 2000 2005 2010 Year m w.e. yr 0.5 **RACMO 2.1** Accumulation Rate (Lenaerts et al., GRL, 2012) mean = 0.432 mwe per year 0.35 std = 0.080 mwe per year Snow Radar RACMO2.1 0.3 $r_{SR} = 0.67$

0.25

1980

1985

1990

1995

Year

2000

2005

2010

Climate model comparison over Thwaites catchment

Temporal variability

- REANALYSES are spot on! r > 0.9

- RACMO2 undernerforms relatively r = 0.68Provides the ability for user to discriminate between models based on need

- RACMO2 has finest spatial rez., r = 0.86

Magnitude

- REANALYSES underestimate
- RACMO2 is about spot on!

2. Historical accumulation rates

0 0

PDG PLEXALAL SOMEX-L CHO.

Long-term core records

ITASE (2000/2001) (Kaspari et al., *J. Glac.*, 2004)

WDC05A/Q (2005) (Banta et al., *GRL*, 2009)

Stack the records with weights based on their average correlation with ERA-Int *P*-*E* for each grid cell within the PIG/THW drainage

Medley et al., TC, 2014

Correlation maps for each core record Black dot show core location

Note strong decrease in correlation beyond the drainage divides

Find the average *r* for each core within PIG/THW boundary

Stack the records weighted accordingly

Stacked Records

(5) Recent accumulation rates are above average, but not out of the ordinary during the last 300+ years

Stacked vs. radar-derived records

Excellent agreement between radar and firn core records suggests:

(7) We know the temporal variability with high confidence over these basins, and

(8) The records are minimally impacted by local-scale phenomena (they are regional!)

Spatial correlation of the 2010 stack with ERA-Interim *P-E*

Strong correlation over majority of the PIG/THW drainage: (3) These basins experience similar precipitation regimes, and (4) The stack is likely representative of variability over both PIG/THW

-0.7

PIG/THW Accumulation Summary

No trend: 1980-2009

Recent rates above average, not unusual

Several sources agree on temporal var.

Signal common to both basins

Minimal noise from local processes

Measuring firn compaction rates from OIB snow radar

1. Find repeat OIB surveys

Medley et al., in review

Measuring firn compaction rates from OIB snow radar

- 1. Find repeat OIB surveys
- 2. Calculate compaction rates

Medley et al., in review

Measuring firn compaction rates from OIB snow radar

- 1. Find repeat OIB surveys
- 2. Calculate compaction rates
- 3. Evaluate modeled compaction rates

Ligtenberg et al., in review

 Unique evaluation: typically assess model ability through comparison with measured density profiles

Summary

- We know the temporal var. in accumulation over the past 3 decades over PIG/THW!
 Radar, firn cores, climate models ALL agree!
- While above average, the recent decades are not out of the ordinary

- Combines strength of firn core records & models

• FDM performs well, must have good climate input though.

Thanks!

Field Team: Lou Albershardt Alison Criscitiello Howard Conway Sarah Das Ian Joughin Luke Trusel

: Travel: WAIS Workshop NASA NPP

Airborne radar

Allows us to image internal horizons beneath the ice surface, which are used to estimate accumulation, over large distances

1. Track several internal horizons

- 1. Track several internal horizons
- 2. Confirm horizons are annually spaced

Stable over past ~30 years

Airborne OIB
snow radar: each
point represents a
30-yr accum.
record (> 6,000)

 Independent of ice core chronology

Medley et al., GRL, 2013

Comparison of various accumulation records

Medley et al., GRL, 2013

- 1. Track several internal horizons
- 2. Confirm horizons are annually spaced

Radar Properties

	Accumulation	Snow
Frequency spectrum	550 – 900 MHz	2 – 6.5 GHz
Range resolution (ice)	40 cm	5-10 cm
Deepest horizon mapped	145 m (425 yrs)	52 m (42 yrs)
Temporal spacing	Multi-year to decadal	Annual*
Survey design	Targeted	Operation IceBridge
Distance flown	9,650 km	16,350 km

Center for Remote Sensing of Ice Sheets (CReSIS; www.cresis.ku.edu)

ASL and WAIS Accumulation

When ASL is deeper, accumulation is...

PIG/THW acc. is NOT significantly correlated

Correlation of the ASL center pressure from **XXXXXXX** and ERA-Interim *P-E*

Correlation of stacked record with ERA-Interim z500 Geopotential Heights

Higher accumulation in PIG/THW when high pressure blocking system exists centered over Drake Passage

It generates anomalous flow up and into these basins

Correlation of SEAT cores with ERA-Interim P-E: 1979-2010

SEAT

Correlation of Snow Radar at SEAT cores with ERA-Interim P-E: 1979-2010

Radar @ SEAT