Ocean-driven basal melt channels and the stability of Amundsen and Bellingshausen Sea ice shelves

Karen Alley and Ted Scambos
University of Colorado Boulder
CIRES, National Snow and Ice Data Center
Basal melt channels

Petermann Glacier from Rignot and Steffen (2008)

Pine Island Glacier from Vaughan et al. (2012)
Meltwater-driven basal channels

Le Brocq et al. 2013
Ocean-driven melt channels

• Carved into shelf bases 1-5 km wide and 50-250 m high
• Visible at surface due to hydrostatic relaxation
• Identified through visible satellite imagery (MODIS Mosaic of Antarctica and Landsat) and, where possible, through IceBridge MCoRDS data
Persistent, stationary polynyas

- ● = polynya
- x = fast ice but no polynya
- + = no fast ice
Distribution of melt channels and polynyas
Key aspects of ocean-driven melt channels

- Originate away from the grounding line
- May remain constant or deepen instead of tapering towards ice edge
- Often roughly follow ice flow direction, but can be highly sinuous
- Frequently end in persistent polynyas
- Tendency to form along the edges of islands and peninsulas
- Strong presence in the Amundsen/Bellingshausen Sea regions, but not much elsewhere

Hypothesis: primarily created by warm CDW
Melt channel growth on the Getz Ice Shelf
Growing melt channel from IceSat
Growing melt channel from IceSat

Background thinning rate on the Getz Ice Shelf: ~2 m/yr (Rignot et al. 2013)
Growing melt channel from IceSat
Growing melt channel deepening rate

Equivalent air thickness: ~20 m
(Van den Broeke 2008)
Growing melt channel deepening rate

Assuming hydrostatic equilibrium:
4.2 m of surface lowering between Feb. 2005 and Mar. 2008 = 12.8 m deepening/year (at the head of the channel)
Potential consequences of melt channels

Scott Peninsula

Ice flow direction

Melt channels

2-way travel time (μs)

Depth $e_r = 3.15$ (m)

Dec. 2002

Jan. 2014
Further research

• Why do melt channels tend to form along islands and peninsulas? Tidal mixing or other mechanisms?

• Could extensive channel melting, particularly along shear margins, lead to significant ice shelf retreat? How much melting would it take for that to happen?
Acknowledgements

- Christopher Shuman and Terry Haran for assistance with IceSat data
- NASA Earth and Space Sciences Fellowship and USGS Landsat grant