Ocean-driven basal melt channels and the stability of Amundsen and Bellingshausen Sea ice shelves

Karen Alley and Ted Scambos University of Colorado Boulder CIRES, National Snow and Ice Data Center

 $C \mid R$

National Snow and Ice Data Center

Supporting Cryospheric Research Since 1976

Funding:

Basal melt channels

Petermann Glacier from Rignot and Steffen (2008)

Pine Island Glacier from Vaughan et al. (2012)

Meltwater-driven basal channels

Le Brocq et al. 2013

Ocean-driven melt channels

Carved into shelf bases
1-5 km wide and 50-250
m high
Visible at surface due to
hydrostatic relaxation

Identified through
visible satellite imagery
(MODIS Mosaic of
Antarctica and Landsat)
and, where possible,
through IceBridge
MCoRDS data

Persistent, stationary polynyas

2013-	‡							
2014				-				
2012-2013		•••••						
2011-							.	
2010-		>						
2011							-	
2009- 2010		🎽						
2008-								
2007-		>		,	\$			
2008				2		-	-	
2006- 2007	🎍							
2005-						•		
2006				2	5	-		F
2004- 2005								
2003- 2004	¥							
2002-				>	ډ ک	٢ -		
2003				2	-			F
l		. <u>.</u>		•			i • •	•
	S	ି	20	් ර්	ঁ কি	~ 4 ⁰	, N	>
	-			•	-			

= polynya **x** = fast ice but no polynya + = no fast ice

Distribution of melt channels and polynyas

Key aspects of ocean-driven melt channels

- Originate away from the grounding line
- May remain constant or deepen instead of tapering towards ice edge
- Often roughly follow ice flow direction, but can be highly sinuous
- Frequently end in persistent polynyas
- Tendency to form along the edges of islands and peninsulas
- Strong presence in the Amundsen/Bellingshausen Sea regions, but not much elsewhere

Hypothesis: primarily created by warm CDW

Melt channel growth on the Getz Ice Shelf

Growing melt channel from IceSat

Growing melt channel from IceSat

Background thinning rate on the Getz Ice Shelf: ~2 m/yr (Rignot et al. 2013)

Growing melt channel from IceSat

Growing melt channel deepening rate

Growing melt channel deepening rate

Assuming hydrostatic equilibrium: 4.2 m of surface lowering between Feb. 2005 and Mar. 2008 = **12.8 m deepening/year** (at the head of the channel)

Potential consequences of melt channels

Further research

- Why do melt channels tend to form along islands and peninsulas? Tidal mixing or other mechanisms?
- Could extensive channel melting, particularly along shear margins, lead to significant ice shelf retreat? How much melting would it take for that to happen?

Acknowledgements

- Christopher Shuman and Terry Haran for assistance with IceSat data
- NASA Earth and Space Sciences Fellowship and USGS Landsat grant