

Larsen Ice Shelf Disintegrations: climate – ice – ocean interactions that led to break-up

T. Scambos¹

B. Huber², M. Cape³, J. Bohlander⁴, E. Domack⁵ E. Pettit⁶, M. Truffer⁶, R. Ross⁷, T. Haran¹

¹NSIDC, Univ. of Colorado, Boulder
 ³Scripps Institution of Oceanography, UCSD
 ⁵University of South Florida, Tampa

²LDEO Columbia University
⁴Polar Science Consultants, Cary, NC
⁶University of Alaska, Fairbanks

⁷Polar 66 Instruments, Sydney Aus.

Antarctic ice shelf break-ups: how to disintegrate an ice shelf

and, low interior compressive stress, dense icy firn, and a long melt season.

Scambos, Hulbe, and Fahnestock, 2003, Ant. Res. Series v.79

- Can we identify a period when the shelves were in steady state?
- What is the first evidence of a shift toward weakening?

CICERCOM

500

15

245

Foyn Point margin evolution, 1963-2001

Scambos et al., 2014 in prep.; see also Glasser and Scambos, 2008

Cape Disappointment margin evolution, 1963-2011

21 Feb 2000

1963-1986: steady-state evolution

1986-1998: increased shear zone fracturing and a change in the stress orientation

1998-2001: shear zone evolves rapidly, becomes disrupted, reducing interior compressive stress.

Scambos et al., 2014 in prep.; see also Glasser and Scambos, 2008

A conceptual model ...

Peninsula climate, sea ice, and ocean conditions changed in the 1980s

Warming and increased westerlies

- more frequent foehn wind events
- sea ice cover declines in the NW Weddell

Greater wind traction on the ocean surface, especially at the ice shelf front

Change in ocean circulation at depth?

modified Weddell Deep Water (mWDW)
entrained beneath the shelves?

Ice shelves weakened, especially at the margins

Increased surface melting on the Larsen ice

increased susceptibility to hydrofracture

Greater exposure to wave action at ice front
wave train flexed shelf to trigger event?

Climate trend for the Antarctic Peninsula

Warming conditions since ~1930 until 2006 slight cooling in recent years from Zagorodnov et al. 2012: from McGrath and Steffen, pers. comm. 2012: 60°45' S; 0 Orcadas 65°15' S; Faraday-Vernadshy $\widehat{\mathbf{O}}$ 64°13' S; Dallinger 66°02' S; Ice Cap, ∂D LARISSA °) Site Beta T_s variations, 1°C divisions Air Temperature 67°34' S; Rothera 70°35' S; Dolleman Is ·10 BH Temp variable, 73°59' S; GOMEZ, ~-1°C/decade 2007, ∂18O warming trends, ~0.3 to 0.6°C/decade -15 78° 08' S: Rutford Ice Stream, BH Temp 2010 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 1700 1750 1800 1850 1900 1950 2000 Bellingshausen Esperanza -- Faraday/Vernadsky - Larsen C Marambio O'Higgins Rothera Year

Borehole temperatures and ice cores

Weather station records

Bull. Am. Met. Soc., 2012, State of the Climate 2011: Antarctica

Linking weather to climate: LARISSA AMIGOS and PoleNet stations

AMIGOS Station at Flask Glacier

M. Cape, M. Vernet et al., 2014 in prep.

Foehn Winds (or 'chinooks')

•Synoptic forcing leads to higher incidence of air flow over the peninsula

•SAM+, stronger low-level westerlies

•Orographically induced ascent of westerlies -> advection of warm, dry air to the surface on the leeward side

•Foehn events persistent over days – weeks

Regional climate pattern during foehn events

Difference **Normal conditions Foehn conditions** a) b) C) Temperature (K) 270 C) Wind anomaly (m/s) -0.1 -0.05 -0.2 -0.15 0 Pas 0.05 0.1 0.15 0.2 Vertical wind velocity Surface wind velocity anomaly (850 hPa) anomaly (10 m)

Temperature and wind from ECMWF ERA-Interim reanalysis

•Open water periods linked to: •stronger SLP gradient

•higher surface air temperature

•enhanced crosspeninsula flow from NW

M. Cape, M. Vernet et al., 2014 in prep.

Warmth and foehn events correlate with El Niño and +SAM for autumn

2010 - 2013 Correlation between seasonally averaged SAM and Nino3.4 and datasets. Significant values in red.

Observation	Season	Nino3.4 (rho)	SAM (rho)
	DJF	-0.32	0.3
Foobn Davis (%)	MAM	0.035	0.4
Tuerin Days (%)	JJA	0.14	0.54
	SON	-0.62	0.79
	DJF	-0.36	0.25
Moon tomp $(0C)$	MAM	-0.3	0.72
	JJA	-0.24	0.72
	SON	-0.29	0.8

Did a decrease in sea ice cover at the Larsen fronts trigger NW Weddell ocean circulation changes?

Stammerjohn et al., 2008 JGR-C; Massom, Scambos et al, in prep.; M. Cape, M. Vernet et al., 2014 in prep.

Ocean data for the region: presence of 'warm' mWDW at depth

Modified Weddell Deep Water

Wave action: pulling the trigger?

Open water in the NW Weddell allows ocean swell to reach the ice shelf front

2002

SSM/I data

AVHRR image

Wave action: pulling the trigger?

Massom, Scambos et al, in prep.

A conceptual model ...

Peninsula climate, sea ice, and ocean conditions changed in the 1980s

Warming and increased westerlies

- more frequent foehn wind events
- sea ice cover declines in the NW Weddell

Greater wind traction on the ocean surface, especially at the ice shelf front

Change in ocean circulation at depth?

modified Weddell Deep Water (mWDW)
entrained beneath the shelves?

Ice shelves weakened, especially at the margins

Increased surface melting on the Larsen ice

increased susceptibility to hydrofracture

Greater exposure to wave action at ice front
wave train flexed shelf to trigger event?

tn_amigos6c03_20111123_2000.jpg

Thank you.

Cape Disappointment margin evolution, 1963-2011

1963-1986: steady-state evolution (or nearly so)

1986-2002: an expansion of the shear zones and a change in the stress directions

2002-present: shear zone evolves rapidly, becomes disrupted, reducing interior compressive stress.

The shelf is now more susceptible to hydro-fracture.

Scambos et al., 2014 in prep.; see also Glasser and Scambos, 2008

Scambos, Berthier, Haran, Shuman et al, 2014 in review The Cryosphere

Summary of results

33 major basins and islands

AP <66°S: -24.8 ± 4.9 Gt a⁻¹ AP West: -4.3 ± 0.8 Gt a⁻¹ AP East: -17.7 ± 3.5 Gt a⁻¹

Eastern 'Shelf Loss' Glaciers*: -15.0 \pm 3.0 Gt a⁻¹

Below 1000 m, both sides: -20.8 \pm 4.1 Gt a⁻¹

Above 1000 m, both sides: -3.0 \pm 0.6 Gt a⁻¹

*Larsen A tributary glaciers ~4.9 Gt a⁻¹ Larsen B tributary glaciers ~7.9 Gt a⁻¹

...assuming 0.9 density for all ice volume, and 20% errors, based on previous work.

Scambos et al., 2013 in prep.

		Table S1. Area (k	Mass ba m²). M	alance ean dM	and vo	olume St a-1)	e change est . Number o	imates Measu	from cor rements	nbined . Mean	satell	ite image (m a ⁻¹), M	and alt Iean d'	timetry V/dt (k	analys	is
		Ice-Covered	Total	Ice l	Front F	Retrea		Bel	ow 1000	masl			Above 1	1000 ma	sl	
	Region	Area	dM/dt	Area	dH/dt	^b dV/c	lt° Area	dDEMd	ICESat ^e	dH/dt	f dV/di	Area	ICESat	∘ dH/dt	f dV/d	t
	AP >66°S, 1-33 AP West, 1-11 AP East, 15-33	34059.5 14337.3 15721.6	-24.2 -4.3 -17.7	248.3 6.1 241.3	-3.5 -5.3 -2.5	-0.8 -0.0 -0.8	23096.5 9014.3 10397.9	56.4 39.2 74.5	9980 2999 6981	-1.00 -0.27 -1.75	-23.1 -2.4 -18.2	10985.7 5322.8 5319.1	2642 893 1775	-0.27 -0.59 -0.10	-3.0 -2.4 -0.7	
	1 Bigo-Barilari B.	1737.4	-1.37	2.5	-3.8	-0.00	825.4	38.6	210	-0.88	-0.72	912.0	152	-0.88	-0.80	
	1a Cadman Gl.	309.6	-0.37	2.5	-3.8	-0.00	101.4	53.8	297	-2.23	-0.23	208.2	(0)	(-0.88)	-0.18	
	2 Trooz-Lever Gl.	1479.7	0.50				771.5	71.5	425	0.72	0.56	708.3	19	-0.0	-0.00	
	3 Flandres B.	1123.7	-0.45				403.8	57.8	156	-0.14	-0.06	720.0	60	-0.61	-0.44	
	4 Anvers Is. 4a Ricke B.	2155.9 <i>83.3</i>	-0.33 <i>-0.21</i>	2.5 <i>2.5</i>	-6.0 -6.0	-0.01 -0.01	1965.2 <i>83.3</i>	40.4 44.5	844 120	-0.16 <i>-2.71</i>	-0.32 <i>-0.23</i>	191.7 0.0	(0)		-0.05	
	5 Andvord B.	1163.2	-0.06				641.6	23.9	80	-0.06	-0.04	521.5	85	-0.33	-0.03	
	6 Brabant Is. 6a Rush Gl.	916.7 <i>43.6</i>	-0.43 <i>-0.07</i>	1.1 <i>1.1</i>	-6.2 -6.2	-0.00 - <i>0.00</i>	672.4 <i>28.2</i>	28.7 96.3	$\frac{14}{3}$	-0.61 -2.64	-0.41 <i>-0.0</i> 8	244.4 14.7	(2) (0)		-0.07 -0.00	
	7 Charlotte B.	505.5	-0.50				316.7	13.6	(0)	-1.57	-0.50	188.8	(0)		-0.05	
	8 Cayley Gl.	1512.6	-0.75				817.4	28.1	255	-0.81	-0.66	695.2	221	-0.25	-0.17	
	9 Wright Ice Pied.	1370.1	-1.22				845.6	57.8	314	-1.35	-1.14	524.3	209	-0.40	-0.21	
	10 Charcot B.	800.9	-0.37				437.2	57.9	159	0.14	0.06	363.7	140	-1.30	-0.47	
	11 West Trinity	1571.5	0.68				1317.7	17.1	542	0.63	0.83	253.8	(5)		-0.07	
	12 Mott Snowfield 12a North Duse B.	987.7 242.9	-1.12 <i>-0.45</i>	0.9 <i>0.9</i>	-3.3 <i>-3.3</i>	-0.0 - <i>0.0</i>	984.0 239.2	14.6 <i>17.7</i>	536 230	-1.26 -2.0	-1.24 -0.49	3.7 3.6	(0) <i>(0</i>)		0.00 <i>0.00</i>	
	13 Tabarin Pen.	363.9	-0.65				363.9	43.8	140	-1.98	-0.72					
	14 Joinville-DuD'U. Is.	2336.4	-0.53				2336.4	0.0	1528	-0.25	-0.58	g 0.0				
	15 Vega Is.	175.7	-0.25				175.7	70.1	34	-1.58	-0.28	0.0				
	16 Snow Hill Is.	312.5	-0.27				312.5	0.0	163	-0.96	-0.30	g 0.0				
	17 North JRI	524.6	-0.64				389.6	37.2	70	-2.00	-0.78	134.9	96	0.05	0.07	
	18 South JRI	568.5	-0.24	8.1	-1.1	-0.01	364.8	60.3	169	-0.78	-0.29	203.7	119	0.13	0.03	L
U	19 West JRI	707.7	-1.52	39.0	-3.8	-0.07	625.6	69.4	178	-2.56	-1.60	82.1	(0)		-0.02	
	20 East Trinity	1347.0	0.55				1119.2	64.0	850	0.67	0.75	227.8	(0)		-0.06	
	21 Sjögren Gl.	1177.3	-1.16	8.7	-3.0	-0.01	852.8	81.9	297	-1.64	-1.40	324.6	123	0.34	0.12	
I	22 Larsen Inlet	807.9	-0.42	3.9	-2.8	-0.01	582.5	87.8	342	-0.85	-0.50	225.4	51	0.17	0.04	$\left \right\rangle$
	23 D-B-E Gl.	822.7	-0.94	11.3	-2.2	-0.01	502.8	95.1	302	-1.91	-0.96	320.0	166	-0.23	-0.07	
	24 Nordenskjöld Cst.	590.4	-0.73	4.5	-3.1	-0.01	391.5	95.5	190	-2.14	-0.84	198.9	69	0.22	0.04	
	24b Arrol Icefld.	363.6	-0.77	4.5	-3.1	-0.01	248.1	94.9	11	-3.68	-0.91	115.5	42	0.41	0.01	
	25 Drygalski Gl.	963.4	-2.39	2.6	-2.2	0.00	618.0	69.1	760	-4.14	-2.56	345.4	43	-0.29	-0.10	
	26 Seal Nunataks	665.3	-0.80				575.3	59.5	292	-1.52	-0.87	90.0	(4)		-0.02	
	26a Fairweather Gl. 26b Robertson Is .	491.7 173.6	-0.56 -0.24				401.7	85.2 0.0	125 167	-1.52 -1.54	-0.60	90.0	(4)		-0.02	
	27 Hektoria-Green Gl.	1146.2	-3.96	85.9	-12.4	-0.53	714.4	62.1	506	-5.05	-3.60	431.8	18	-0.63	-0.27	
	28 Evans Gl.	299.1	-0.77	53.6	-2.8	-0.08	259.2	57.2	116	-2.92	-0.76	39.9	(1)		-0.01	
	29 Jorum-Punchbl. Gl.	596.8	-0.51	10.7	-3.8	-0.02	313.2	80.4	179	-1.93	-0.60	283.6	143	0.19	0.05	
	30 Crane Gl.	1314.8	-2.10	1.3	-3.9	-0.00	409.3	60.1	430	-5.78	-2.36	905.5	318	0.03	0.03	
1	31 Cape Disappt.	1098.5	-0.36	11.7	-1.1	-0.00	958.5	47.2	713	-0.45	-0.43	140.0	58	0.35	0.05	/
	31a M-M-P Gl.	662.4	-0.23	11.7	-1.1	-0.00	588.0	45.2	436	-0.38	-0.23	75.4	(9)	0.75	-0.02	
	32 Flack Gl	1247 2	-0.17				714.2	58.2	203	0.30	-0.21	532.1	150	-0.19	-0.10	
	33 Lennard Cl	1841 0	-1 21				1005.1	36.6	900	-1.00	-1.00	936.0	416	-0.54	-0.45	
	55 Leppard Ul.	1041.7	-1.31				1003.1	50.0	900	-1.00	1.00	030.8	410	-0.54	-0.43	

Abbreviations for place names : AP, Antarctic Peninsula; B., Bay; Cst., Coast; Disappt., Disappointment; Du., Dundee; D'U., D'Urville; Gl., Glacier; Is., Island, Icefild., Icefield; JRI, James Ross Island; M-M-P, Mapple-Melville-Pequod; Pen., Peninsula; Pied., Piedmont; Punchbl., Punchbowl.

Assuming mean density of 900 kg/m³ for all dV/dt measurements.

^bRate of elevation loss measured just above area of grounded ice retreat.

Volume loss assumes floatation was reached midway between 2003 – 2010 (period of observations)

Percent area covered by differential DEM satellite stereo-image data.

«Number of repeat-track point measurements used. If <10 ICESat dH/dt measurements are available, the regional mean ICESat dH/dt (-0.27 m a⁻¹) or, for sub-basins, the main basin mean, is used.

^tHypsometric weighting for areas below 1000 m elevation; weighted by number of ICESat measurements for areas above 1000 m elevation ^sFor these regions, dH/dt was determined by ICESat only.

Scambos et al., 2013 in prep.

Accumulation map and 'Imbalance Ratio'

Red: >2700 kg m⁻² a⁻¹; Purple: <200 kg m⁻² a⁻¹

'Imbalance Ratio', dM/dt / dMi/dt

Lenaerts et al., 2012; Scambos et al., 2014 The Cryo.

Scar Inlet Ice Shelf in 2006 – the last intense melt season

Iceberg A-54

Remnant Larsen B Ice Shelf --Scar Inlet

11 February 2006

Scar Inlet Shelf is riddled with narrow crevasses; Spacing is << ice thickness; Accumulation rate is near zero (2010-2012).

MODIS – pair flow speed, 2002-2004

MODIS – pair flow speed, 2004-2006

MODIS – pair flow speed, 2006-2008

MODIS – pair flow speed, 2007-2009

MODIS – pair flow speed, 2010-2012

Scar Inlet Ice Shelf and tributary glaciers – evolving toward break-up

LARISSA Project has installed several instruments since 2010 – GPS and AMIGOS – and has supported remote sensing and climate analysis.

Ice velocity mapping – Flask Glacier

Significant speed-up of the shelf following the 2002 calving; confirmed by AMIGOS GPS

InSAR velocity mapping: Ian Joughin GPS processing: Martin Truffer ASTER image pair velocity: J. Bohlander and T. Scambos

Project Conclusions

Although a climate-driven hydro-fracture process triggered several shelf disintegrations, there are critical structural changes preceding events.

these appear to begin in the 1990s for Larsen B, Larsen A, and PGC shelves

 they may be related to sea ice cover and ocean circulation changes, or effects of increased melt water on the shelf and glacier surfaces.

Elevation, volume, and mass losses in the northern A.P. are dominated by changes following ice shelf disintegration and evolving grounded ice loss.

- total mass loss for study area is 24.2 \pm 4.8 Gt a⁻¹
- elevation decline is pervasive, despite decadal increases in accumulation
- significant ice front changes continue in eastern Antarctic Peninsula

Further retreat or disintegration at the Scar Inlet Ice Shelf is imminent

- this may come from an intense melt season and hydrofracture, or
- existing large rifts and may fail structurally w/o a major melt season.

The Larsen A and B ice shelves disintegrated by structural weakening and hydrofracture.

- Hydrofracture was a result of extensive surface melting and melt ponds.

However, satellite images of the Larsen B indicate early changes, preceding any shelf loss

The Peninsula climate during 1986-2006 saw frequent NW airflow, +SAM and -ENSO

These climate patterns correlate with melt-producing, sea-ice-shifting foehn winds

Sea ice trends for the Peninsula area show reduced summertime sea ice concentration in the NW Weddell, ~1985 – 2006, particularly for the 1990s

Conceptual Model -

 Reduced sea ice concentration in the NW Weddell allows wind stress to be transferred to the ocean surface layer;

 modified WDW was likely induced to flow into the sub-shelf cavities more frequently.
 mWDW has sufficient heat to cause some minor basal shelf melting and thinning, leading to structural changes, reduced backstress, and facilitating hydro-fracture.

Low sea ice cover allows wave action to contribute to shelf weakening and hydrofracture

Summary of results

Table 1. Summary of Mass Balance for the northern Antarctic Peninsula (>-66°S), 2001-2010 Units: Area (km²), Mean dM/dt (Gt a⁻¹), Number of Measurements, Mean dh/dt (m a⁻¹), Mean dV/dt (km³ a⁻¹)

	Ice-Covered	Total	Ice l	Front R	etreat	<u>84</u>	Belo	w 1000 i	nasl		A	bove 10	00 masl	
Region	Area	dM/dtª	Area	<u>dH/dt</u>	^b <u>dV/dt</u> ^c	<u>Area</u>	dDEM ^d	ICESate	<u>dH/dt</u>	f <u>dV/dt</u>	Area	<u>ICESat</u> e	<u>dH/dt</u> f	dV/dt
AP >66°S, 1-33	34059.5	-24.2	248.3	-3.5	-0.8	23096.5	56.4	9980	-1.00	-23.1	10985.7	2642	-0.27	-3.0
AP West, 1-11	14337.3	-4.3	6.1	-5.3	-0.0	9014.3	39.2	2999	-0.27	-2.4	5322.8	893	-0.59	-2.4
AP East, 15-33	15721.6	-17.7	241.3	-2.5	-0.8	10397.9	74.5	6981	-1.75	-18.2	5319.1	1775	-0.10	-0.7
Northwest AP Coast ^g	5255.1	-1.66				3417.9	35.1	1270	-0.27	0.91	1837.0	575	-0.50	-0.92
Western IFL Glaciers ^t	436.5	-0.68	6.1	-5.3	-0.03	212.9	55.7	410	-2.54	-0.54	222.9	(0) (•	0.84)	-0.19
Eastern ISL Glaciers ⁱ	9262.3	-14.97	233.2	-3.7	-0.76	6030.9	70.9	3903	-2.56	-15.68	3232.6	941	-0.01	-0.21
James Ross Island ^j	1800.8	-2.40	47.1	-3.3	-0.08	1380.0	58.0	470	-1.93	-2.67	420.7	215	0.02	0.08
Prince Gustav tributari	es ^k 1885.0	-2.68	47.7	-3.7	-0.09	1478.4	76.6	475	-2.03	-3.00	406.7	123	0.23	0.94
Larsen A tributaries ¹	3184.4	-4.48	22.3	-2.7	-0.03	2094.8	85.5	1594	-2.32	-4.86	1089.7	329	-0.08	-0.09
Larsen B ISL tributarie	s ^m 4192.9	-7.81	163.2	-3.9	-0.64	2457.7	55.2	1834	-3.18	-7.82	1736.2	489	-0.13	-0.22
Scar Inlet Ice Shelf trib	. ⁿ 3524.5	-1.36				2089.8	46.4	1965	-0.47	-0.98	1434.7	715	-0.37	-0.53

Abbreviations for place names : AP, Antarctic Peninsula; ISL, ice shelf loss; IFL, ice front loss.

^aAssuming mean density of 900 kg/m³ for all dV/dt measurements

^bRate of elevation loss measured just above area of grounded ice retreat.

^cVolume loss assumes floatation was reached midway between 2003 – 2010 (period of observations).

^dPercent area covered by differential DEM satellite stereo-image data

^eNumber of repeat-track point measurements used. If <10 ICESat dH/dt measurements are available, the regional mean ICESat dH/dt

(-0.27 m a⁻¹) or, for sub-basins, the main basin mean, is used.

^fHypsometric weighting for areas below 1000 m elevation; weighted by number of ICESat measurements for areas above 1000 m elevation.

^gGlacier basins 8 – 11 as shown in Figure 1.

^hGlacier basins 1a, 4a, and 6a as shown in Figure 1.

ⁱGlacier basins 19, 21-25, 26b, 27-30, and 31a as shown in Figure 1.

^jGlacier basins 17, 18, and 19 as shown in Figure 1.

^kGlacier basins 19 and 21 as shown in Figure 1.

Glacier basins 22-25 as shown in Figure 1.

^mGlacier basins 27-30, and 31a as shown in Figure 1.

ⁿGlacier basins 31b, 32, and 33 as shown in Figure 1.

Summary of results: hypsometry of changes

West: basins with small ice front changes

Pervasive small elevation loss, despite regional gradients in elevation, melt, and accumulation, and despite recent increases in accumulation — Has warming increased firn compaction? — or, residual effects of post-LIA ice shelf losses?

East: basins with ice shelf and front retreat

Elevation and volume losses greatest at low elev. —Dominantly due to backstress reduction from shelf and ice front retreats

Near-zero elevation change in upper catchments
 Scambos et al., 2013a in prep.

Summary of results – error analysis

Comparison of dH/dt between the two methods (all co-located data)

	<u>dDEM mean</u>	ICESat mean	<u>#points</u>
entire study region	-1.77 m a ⁻¹	-2.09 m a ⁻¹	6158
<1000 m elevation	-2.08 m a⁻¹	-2.42 m a ⁻¹	5213
>1000 m elevation	-0.06 m a ⁻¹	-0.23 m a ⁻¹	945
northern half of study area	-1.32 m a ⁻¹	-1.25 m a ⁻¹	3206
southern half of study area	-2.25 m a ⁻¹	-3.00 m a ⁻¹	3286
Western basins	-0.14 m a ⁻¹	-0.60 m a ⁻¹	1195
Eastern basins	-3.21 m a ⁻¹	-3.73 m a⁻¹	2820

Cross-over analysis (a check on agreement between methods, and ICESat correction)

7 usable crossover regions in study area;

Mean difference between methods: $dDEM - ICESat_{corr}$ Mean difference without correction: $dDEM - ICESat_{uncorr}$ Mean absolute difference ascending vs descending_{corr} ascending vs descending_{uncorr} +0.05 m a⁻¹ +0.96 m a⁻¹ 1.28 m a⁻¹ 1.96 m a⁻¹

Scambos et al., 2013a in prep.

Preliminary Results from AMIGOS precision GPS – continued shelf acceleration and glacier modulation by tides

tide model, L. Padman; GPS processing, Martin Truffer

Ice shelf break-up has a large proportional effect on ice sheet mass balance

- ice mass loss of the northern Peninsula (<1 % of the ice sheet) is ~30% of the total mass imbalance for the continent;
- other regions show extended melt seasons and melt ponding at present;
- further warming could place far larger glacier systems 'at risk'

(a)

Ocean data for the region: 'warm' mWDW at depth, sometimes

Aced

Commo

Cruck (MAR

San

Aced

Commo

Cruck (MAR

San

des se

L'atom

· astat

CUCKIONS

5. NO

- This is the end stage of a long process.
- Glasser and Scambos 2008 (and Viele et al., 2007 and Kazendhar et al., 2007) showed that there were precursors, but only looked at the period just before disintegration.

.

• Can we identify:

a period when the shelf was in steady state?

the first evidence of a shift toward weakening?