Geophysical Observations of Deformation Near The Grounding Line of Beardmore Glacier Paul Winberry, Howard Conway, Michelle Koutnik, and Max Stevens

Major Pathway for Ice Exiting EAIS via RIS

Two Field Seasons

2012: Mid-Glacier 2013: Grounding Zone

Paul Winberry

Rignot et al 2011 MOA, nsidc

Major Pathway for Ice Exiting EAIS via RIS

Two Field Seasons

2012: Mid-Glacier 2013: Grounding Zone

Paul Winberry

-Beardmore Glacier-

Beardmore

Byrd

Grounding Zones Regulate Retreat

Complex Ice-Ocean Interaction

Grounding

WorldView from Polar Geospatial Center

Grounding Zone

Rignot et al 2011

2012 Airborne Radar Survey to Map Ice Thickness

Paul Winberry

Airborne Radar

2013 Ground Based Radar Survey to Map Ice Thickness

Paul Winberry

Ground Based Radar

Combined Tracks

.

Radar

Phase Sensitive Radar Survey to Map Ice **Basal Melt** (more ice deformation) see Twit at AGU

BAS Supplied

Paul Winberry

Phase Sensitive Radar

Active Source Seismic to map Water Column Thickness and Subglacial Geology

Active Source Seismic

Passive Source Seismic to Monitor Ice Deformation and Motion

Paul Winberry

Passive Source Seismic

Continuous GPS to study Tidal Deformation and Motion

Paul Winberry

"Large" Channels carved into the bottom of the ice

Important for understanding basal melting of ice shelfs

> Formation? inherited, subglacial discharge, oceanographic

Le Brocq et al 2013

Melt Channels

May Weaken Ice Shelfs

Paul Winberry

Melt Channels

Vaughn et al 2012

Imperfections created near grounding zones are advocated downstream

Appear to influence calving

Paul Winberry

Hulbe and Fahnestock 2007

Melt Channels

Ridges appear in imagery that appear to be channels

Channels on Beardmore

Ridges appear in imagery that appear to be channels

Channels on Beardmore

Surface Elevation Across Ridge Trough

Paul Winberry

Seismic Reflection Image

Paul Winberry

Channels on Beardmore

Radar profiles show the channel growing down flow

Paul Winberry

Flow is Modulated by the Tide (see Marsh et al, 2013)

Fast On the Falling Tide (~ 5km from GL)

Minimal ~15 km down flow

Paul Winberry

GPS

Passive Source Seismic Record Thousands of Ice Fracturing Events

Can we use to understand the Deformation of the ice shelf? Ala Fricker, Bassis amongst others

Paul Winberry

Passive Source Seismic man man man man a la m mon man // mappen man / ||||

Pas

First Thing We Do Is Count

Second we plot versus time

> Clear Tidal Pacing

Falling Tide Peak

Rising Tide Peak

Paul Winberry

assive Source Seismic			

Next Thing we Do is Locate Events

Paul Winberry

Seismic Activity

"Two" Clusters

Paul Winberry

Seismic Activity and Tidal Pacing

Grounding Line Events on Falling Tide "speed up of ice shelf"

Ice Shelf Events on **Rising and Falling Tide**

Paul Winberry

"Far" from the Grounding Ice Shelf is still not Hydrostatic

Limit of Flexure from Marsh et al, 2014

Seismicity

"Far" from the Grounding Ice Shelf is still not Hydrostatic

Limit of Flexure from Marsh et al, 2014

Paul Winberry

Tidal Flexure is important see next talk

